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The Chinese pronunciation system offers two characteristics that distinguish it from other languages: deep
phonemic orthography and intonation variations. In this paper, we hypothesize that these two important
properties can play a major role in Chinese sentiment analysis. In particular, we propose two effective features
to encode phonetic information and, hence, fuse it with textual information. With this hypothesis, we propose
Disambiguate Intonation for Sentiment Analysis (DISA), a network that we develop based on the principles of

reinforcement learning. DISA disambiguates intonations for each Chinese character (pinyin) and, hence, learns
precise phonetic representations. We also fuse phonetic features with textual and visual features to further
improve performance. Experimental results on five different Chinese sentiment analysis datasets show that the
inclusion of phonetic features significantly and consistently improves the performance of textual and visual
representations and surpasses the state-of-the-art Chinese character-level representations.

1. Introduction

In recent years, sentiment analysis has become increasingly popular
for processing social media data on online communities, blogs, wikis,
microblogging platforms, and other online collaborative media [1]. It
is a field of natural language processing (NLP) and affective comput-
ing [2] that comprises many subtasks, such as anaphora resolution [3]
and subjectivity detection [4], and aims to classify text — but sometimes
also audio, images, and video [5] - into positive, negative and neu-
tral [6]. Sentiment analysis techniques can be broadly categorized into
unsupervised [7], semi-supervised [8] and supervised [9] approaches.

While most approaches in the literature address the problem in a
language-independent approach [10-12], Chinese sentiment analysis in
fact requires tackling language-dependent challenges due to its unique
nature, including word segmentation [13,14] and compositional analy-
sis [15-19]. There are two main characteristics distinguishing Chinese
from other languages. Firstly, it is a pictogram language [20], which
means that symbols (called Hanzi) intrinsically carry meanings. Multi-
ple symbols might form a new single symbol via geometric composition.
The hieroglyphic nature of Chinese writing system differs from many
Indo-European languages such as English or German. It has therefore
inspired many works to explore the sub-word components (such as
Chinese character and Chinese radicals) via a textual approach [15-
19,21]. The other research line models the compositionality using the
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visual presence of the characters [22,23] by the means of extracting
visual features from bitmaps of Chinese characters to further improve
the Chinese textual word embeddings.

The second characteristic of Chinese is that it is a language of
deep phonemic orthography according to the orthographic depth hy-
pothesis [24,25]. In other words, it is hard to support the recognition
of words involving language phonology. Each symbol of modern Chi-
nese language can be phonetically transcribed into a romanized form,
termed pinyin, consisting of an initial (optional), a final, and the
tone. More specifically, as a tonal language, one single syllable in
modern Chinese can be pronounced with five different tones, i.e., four
main tones and one neutral tone (shown later in Table 5). We argue
that this particular form of Chinese language provides semantic cues
complementary to its textual form as illustrated in Table 1. It is worth
noting that the tones alone do not have a direct link to sentiment po-
larities. Instead, tones’ co-occurrence with specific syllable and context
determines sentiment polarity. Despite its important role in Chinese
language, to the best of our knowledge, it has not yet been explored
by existing work for NLP tasks of Chinese language.

We surmise that the second factor of Chinese language can play a
vital role in Chinese natural language processing especially sentiment
analysis. Particularly, to consider the deep phonemic orthography and
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Table 1
Examples of intonations that alter meaning and sentiment.

Text Pronunciation Meaning Sentiment polarity
e kong Empty Neutral
- kong Free Neutral
© jid Fake Neutral/Negative
jia Holiday Neutral
e haochi Delicious Positive
haochi Gluttony Negative

intonation variety of the Chinese language, we propose two steps to
learn Chinese phonetic information.

Firstly, we come up with two types of phonetic features. The first
type extracted audio features from real audio clips. The second type
learned pinyin token embeddings from a converted pinyin corpus. For
each type of the features, we provide one version with intonation and
one version without intonation.

Upon building the feature lookup table between each Chinese pinyin
and its feature/embedding, we reach our second step, which is to de-
sign a Disambiguate Intonation for Sentiment Analysis (DISA) network
that works on pinyin sequence and automatically decides the correct
intonation for each pinyin. This step is crucial in disambiguating mean-
ings and even sentiment of Chinese characters. Specifically, inspired
by [26], we employ a reinforcement network as the main structure for
our DISA network. The actor network is a typical neural policy network,
whose action is to choose one out five intonations for each pinyin. The
critic network is a long short-term memory (LSTM) sequence model,
which learns the pinyin sentence sequence representation. The policy
network is updated by a delayed reward when the sequence represen-
tation is built, while the critic network is updated by a sentiment class
cross-entropy loss.

Motivated by the recent success of multimodal learning, we also
incorporate textual and visual features with phonetic features. To the
best of our knowledge, we are the first to consider the deep phonemic
orthographic characteristic and intonation variation in a multimodal
framework for the task of Chinese sentiment analysis. Experimental
results show that the proposed multimodal framework outperforms the
state-of-the-art Chinese sentiment analysis method by a statistically
significant margin. In summary, the three main contributions of this
paper are:

» We fuse different modalities associated with Chinese characters to
emulate the way humans read and understand Chinese language.

» We introduce a reinforcement learning based framework, which
jointly disambiguates intonations of Chinese characters and re-
solves sentiment ambiguity.

+ We demonstrate the effectiveness of our framework on several
benchmark datasets.

The remainder of this paper is organized as follows: we first present
a brief review of embedding features, sentiment analysis and Chinese
phonetics; we then introduce our model and provides technical details;
next, we describe the experimental results and presents analytical
discussions; finally, we conclude the paper and suggest future work.

2. Related work

We start with a brief review of textual embedding methods, fol-
lowed by analyzing existing Chinese representations that include both
textual embeddings and visual embeddings. Next, we briefly review
sentiment analysis and Chinese phonetics.
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2.1. Chinese Textual embedding

One-hot representation is the initial numeric word representation
method in NLP. However, it usually leads to a problem of high dimen-
sionality and sparsity. To solve this problem, distributed representation
(or word embedding) [27] is proposed. Word embedding is a represen-
tation which maps words into low dimensional vectors of real numbers
by using neural networks. The key idea is based on distributional
hypothesis so as to model how to represent context words and the
relation between context words and target word.

Since the introduction of C&W model [28] in 2008, direct learning
of word embedding has become popular. In 2013, Mikolov et al. [29]
introduced both Continuous Bag-of-words model (CBOW) and Skip-
gram model. The former placed context words in the input layer and
target word in the output layer whereas the latter swapped the input
and output in CBOW. In 2014, Pennington et al. [29] created the
‘GloVe’ embeddings. Unlike the previous which learned the embeddings
from minimizing the prediction loss, GloVe learned the embeddings
with dimension reduction techniques on co-occurrence counts matrix.

2.2. Chinese Representation

Chinese text differs from English text for two key aspects: it does not
have word segmentations and it has a characteristic of compositionality
due to its pictogram nature. Based on the former aspect, word segmen-
tation tools are always employed before text representation, such as
ICTCLAS [30], THULAC [31], Jieba' and so forth. Based on the latter
aspect, several works had focused on the use of sub-word components
(such as characters and radicals) to improve word embeddings. Chen
et al. [21] proposed decomposition of Chinese words into characters
and presented a character-enhanced word embedding model (CWE).
Sun et al. [15] and Li et al. [16] decomposed Chinese characters to
radicals and developed a radical-enhanced Chinese character embed-
ding. In [17], pure radical based embeddings were trained for short-text
categorization, Chinese word segmentation and web search ranking.
Yin et al. [18] extend the pure radical embedding by introducing
multigranular Chinese word embeddings. Peng et al. [19] and Chao
et al. [32] explored utilizing radical information for the sentiment anal-
ysis task. Recently, Zhang et al. [33] proposed an interactive multitask
learning method for Chinese text sentiment classification.

Multimodal representation in the past few years has become a
growing area of research. Liu et al. [23] and Su et al. [22] explored
integrating visual features to textual word embeddings. The extracted
visual features proved to be effective in modeling the compositionality
of Chinese characters.

2.3. Sentiment analysis and Chinese phonetics

Sentiment analysis has raised growing interest both within the
scientific community, leading to many exciting open challenges, as
well as in the business world, due to the remarkable benefits to be
had from business intelligence [34], political forecasting [35], recom-
mender systems [36], social network analysis [37], dialog systems [38],
and more. Various directions have been actively explored in the past
few year, from document level [39-41], to sentence level [42-44]
and to aspect level [45-47]. Most methods took a high perspective
to develop effective models for a broad spectrum of languages [48].
Only a limited number of works spend efforts in studying language-
specific characteristics [16,22,49]. Among them, there is almost no
literature trying to take advantage of phonetic information for Chinese
representation. We, however, believe the Chinese phonetic information
could be of great value to the representation and sentiment analysis of
Chinese language, due to but not limited to the following evidence.

L http://github.com/fxsjy/jieba
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Shu and Anderson conducted a study on Chinese phonetic aware-
ness in [50]. The study involved 113 participants of Chinese 2nd,
4th, and 6th graders enrolled in a working-class Beijing, China ele-
mentary school. Their task was to represent the pronunciation of 60
semantic—phonetic compound characters. Results showed that children
as young as 2nd graders are better able to represent the pronunciation
of regular characters than irregular characters or characters with bound
phonetics.

The strong influence of familiarity on pronunciation underlines an
unavoidable fact about the Chinese writing system: the system does
not offer pronunciation cues that are as reliable or consistent as those
of many other writing systems, such as English [51]. Moreover, Hsiao
and Shillcock argued that semantic-phonetic compound (or phonetic
compound) comprised about 81% of the 7000 frequent Chinese char-
acters [52]. These compounds would affect semantics greatly if we can
find an approach to effectively represent their phonetic information.

To the best of our knowledge, no previous work has integrated
pronunciation information to Chinese representation. Due to its deep
phonemic orthography, we surmise that the Chinese pronunciation
information could elevate the representations to a higher level. Thus,
we propose to learn phonetic features and present a DISA network to
automatically convert the Chinese character to its pinyin with correct
intonation.

3. Model

In this section, we first present how features from textual and visual
modalities were extracted. Next, we delve deep into the details of
different type of phonetic features. Then, we introduce a DISA network
which parses Chinese characters to their pronunciations with tones.
Lastly, we demonstrate how we fuse features from three modalities for
sentiment analysis.

3.1. Textual embedding

As in most recent literature, textual word embedding vectors were
treated as the fundamental representation of texts [27,29,53]. Firstly
introduced by Bengio et al. [27], low-dimensional word embedding
vectors learned a distributed representation for words. Compared with
traditional n-gram word representations, they largely reduced the data
sparsity problem and provided more friendly access towards neural net-
works. In 2013, Mikolov et al. [29] introduced the toolkit ‘Word2Vec’
which populated the application of word embedding vectors due to its
fast learning time. In the toolkit, two predictive-based word vectors,
CBOW and Skip-gram, were proposed. They either predicted the target
word from context or vice versa. Pennington et al. [53] developed
‘GloVe’ in 2014 which employed a count-based mechanism to embed
word vectors. Following the convention, we used ‘GloVe’ character
embeddings [53] of 128-dimension to represent text.

It is worth noting that we set the fundamental token of Chinese
text as the character instead of the word for two reasons. Firstly, the
character is designed to align against the audio feature. Audio features
can only be extracted at character level, as Chinese pronunciation is
on each character. In Chinese language, the fundamental phonetic unit
which is semantically self-contained is at character level. In English,
however, the fundamental phonetic unit is at word level (except some
prefix/suffix syllables). Secondly, character-level processing can avoid
the errors induced by Chinese word segmentation. Although we used
character GloVe embedding as our textual embedding, experimental
comparisons were conducted with both CBOW [29] and Skip-gram
embeddings.
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Table 2
Configuration of convAE for visual feature extraction.

Layer# Layer configuration

1 Convolution 1: kernel 5, stride 1
2 Convolution 2: kernel 4, stride 2
3 Convolution 3: kernel 5, stride 2
4 Convolution 4: kernel 4, stride 2
5 Convolution 5: kernel 5, stride 1
Feature Extracted visual feature: (1,1,512)
6 Dense ReLu: (1,1,1024)

7 Dense ReLu: (1,1,2500)

8 Dense ReLu: (1,1,3600)

9 Reshape: (60,60,1)

Fig. 1. Original input bitmaps (upper row) and reconstructed output bitmaps (lower
TOW).

3.2. Training visual features

Unlike the Latin language, the Chinese written language originated
from pictograms. Afterwards, simple symbols were combined to form
complex symbols in order to express abstract meanings. For example, a
geometric combination of three “K (wood)’ creates a new character ‘Fx
(forest)’. This phenomenon gives rise to a compositional characteristic
of Chinese text. Instead of a direct modeling of text compositionality
using sub-word [18,21] or sub-character [15,16,19] elements, we opt
for a visual model. In particular, we constructed a convolutional auto-
encoder (convAE) to extract visual features (visual feature is not the
main focus of this work). Details of the convAE are listed in Table 2.

Following the convention in [54] and [22], we set the input of the
model to a 60 by 60 bitmap for each of the Chinese characters and the
output of the model to a dense vector with a dimension of 512. The
model was trained using Adagrad optimizer on the reconstruction error
between original bitmap and reconstructed bitmap. The loss is given as:

L
D= x ]+ (= x,)) ¢9)
j=1

where L is the number of samples. x, is the original input bitmap
and x, is the reconstructed output bitmap. An example of the original
and reconstructed bitmaps is shown in Fig. 1. After training the visual
features, we obtained a lookup table where each Chinese character

corresponds to a 512-dimensional feature vector.
3.3. Learning phonetic features

Written Chinese and spoken Chinese have several fundamental dif-
ferences. To the best of our knowledge, all the previous literature
on Chinese NLP ignored the significance of the audio channel. As
cognitive science suggests, human communication depends not only on
visual recognition but also audio activation. This drove us to explore
the mutual influence between the audio channel (pronunciation) and
textual representation.

Popular Latin and Germanic languages such as Spanish, Portuguese,
English etc. share two remarkable characteristics. Firstly, they have
shallow phonemic orthography.? In other words, the pronunciation
of a word is largely dependent on the text composition in such lan-
guages. One can almost infer the pronunciation of a word given its

2 http://en.wikipedia.org/wiki/Phonemic_orthography
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Table 3

Illustration of 4 types of phonetic features: a(x) stands for the extracted audio feature
for pinyin ‘x’; v(x) represents learned embedding vector for ‘x’; number O to 4 represents
5 diacritics.

Text BRI -
English Suppose tomorrow is holiday.
Pinyin Jia Shé Ming Tian Fang Jia
Extracted from audio ExO a(Jia) a(She) a(Ming) a(Tian) a(Fang) a(Jia)
Ex04 a(Jid) a(She) a(Ming) a(Tian) a(Fang) a(Jia)
Learned from corpus PO v(Jia) v(She) v(Ming) v(Tian) v(Fang) v(Jia)
PW v(Jia3) v(She4) v(Ming2) v(Tianl) v(Fang4) v(Jia4)

textual spelling. From this perspective, textual information can be
interchangeable with phonetic information.

For instance, if the pronunciations of English word ‘subject’ and
‘marineland’ were known, it is not hard to speculate the pronuncia-
tion of word ‘submarine’, because one can combine the pronunciation
of ‘sub’ from ‘subject’ and ‘marine’ from ‘marineland’. This implies
that phonetic information of these languages may not have additional
information entropy than textual information. Secondly, intonation
information is limited and implicit in these languages. Generally speak-
ing, emphasis, ascending intonation and descending intonation are the
major variations in these languages. Although they exerted great influ-
ence in sentiment polarity during communication, there is no apparent
clue to infer such information only from text [55].

However, Chinese language differs from the above-mentioned lan-
guages in several key aspects. Firstly, it is a language of deep phone-
mic orthography. One can hardly infer the pronunciation of Chinese
word/character from its textual writing. For example, the pronun-
ciations of characters 9 and /' are “i’ and ‘yue’, respectively. A
combination of the two characters makes another character ¥ which
pronounced ‘ming’. This characteristic motivates us to find how the
pronunciation of Chinese can affect natural language understanding.
Secondly, intonation information of Chinese is rich and explicit. In
addition to emphasis, each Chinese character has one tone (out of
five different tones), marked by diacritics explicitly. These intonations
(tones) greatly affect the semantic and sentiment of Chinese characters
and words. Examples were shown in Table 1.

To this end, we found it was not trivial to explore how Chinese
pronunciation can influence natural language understanding, especially
sentiment analysis. In particular, we designed two approaches to learn
phonetic information, namely feature extraction from audio signal and
embedding vector learning from textual corpus. For either of the above
two approaches, we have two variations, namely with (Ex04, PW) or
without (Ex0, PO) intonations. An illustration is shown in Table 3.
Details of each type will be introduced in the following sections.

3.3.1. Extracted feature from audio clips (Ex0, Ex04)

The spoken system of modern Chinese is named ‘Hanyu Pinyin’,
abbreviated to ‘pinyin’.® It is the official romanization system for
mandarin in mainland China [56]. The system includes four diacritics
denoting four different tones plus one neutral tone. For each of the
Chinese characters, it has one corresponding pinyin. This pinyin has
five variations in tones (we treat the neutral tone as one special tone).
The statistics of Chinese character and pinyin are listed in Table 4. It
shows that the number of frequently used characters is bigger than the
number of pinyin counterparts with or without tones. This suggests that
certain Chinese characters share the same pinyin and further implies
that the one-hot dimensionality will reduce if pinyin was used to
represent text.

In order to extract phonetic features, for each tone of each pinyin,
we collected an audio clip which recorded a female’s pronunciation

3 http://iso.org/standard/13682.html
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Table 4
Statistics of Chinese characters and ‘Hanyu Pinyin’.

Pinyin Textual character
w/o tones w/ tones
Number of tokens 374 1870 3500

of that pinyin (with tone) from a language learning resource.” Each
audio clip lasts around one second with a standard pronunciation of
one pinyin with tone. The quality of these clips was validated by two
native speakers. Next, we used openSMILE [57] to extract phonetic
features on each of the obtained pinyin-tone audio clip. Audio features
are extracted at 30 Hz frame-rate and a sliding window of 20 ms. They
consist of a total number of 39 low-level descriptors (LLD) and their
statistics, e.g., MFCC, root quadratic mean, etc.

After obtaining features for each of the pinyin-tone clip, we obtained
an m X 39 dimensional matrix for each clip, where m depends on the
length of clip and 39 is the number of features. To regulate the feature
representation for each clip, we conducted singular value decomposi-
tion (SVD) on the matrices to reduce them to 39-dimensional vectors,
where we extracted the vector with the singular values. In the end, high
dimensional feature matrices of each pinyin clip were transformed to a
dense feature vector of 39 dimensions. A lookup table between pinyin
and audio feature vector is constructed accordingly.

In particular, we prepared two sets of extracted phonetic features.
The first type comes with tone, which is the feature we obtained from
the above processing. We denote it as Ex04, where ‘Ex’ stands for
extracted features and ‘04’ stands for having one tone from 0 to 4
(we represent neutral tone as 0 and the first to the fourth tone as 1
to 4 respectively). The second type removed the variations of tones,
in which we take the arithmetic mean of five features from five tones
of each pinyin. We denote it as Ex0, where ‘0’ stands for no tone.
In the second type of feature, pinyin scripts with different tones will
have same phonetic features, even though they may mean different
meanings.

3.3.2. Learned feature from pinyin corpus (PO, PW)

Instead of collecting audio clips for each pinyin and extracting audio
features, we directly represent Chinese characters with pinyin tokens,
as shown in Table 3. Specifically, we convert each Chinese character in
a textual corpus to it pinyin. The original corpus which was represented
by a sequence of Chinese characters was converted to a phonetic corpus
which was represented by a sequence of pinyin tokens.

In the phonetic corpus, contextual semantics were still maintained
as in textual corpus. This is achieved with the help of online parser,®
which parse Chinese characters to their pinyin counterparts. It should
be pointed out that 3.49% of the common 3500 Chinese characters
(around 122 characters) [58] have multiple pinyin scripts,® namely
‘duo yin zi’(heteronym). Although the parser claimed its support to
heteronym, we took the most statistically-possible pinyin prediction of
each heteronym.

We did not disambiguate various heteronyms particularly, as this
is not the major assumption we try to argue in this paper. However, it
could be a direction worth working on in the future. The DISA provides
two modes in its conversion from Character to pinyin, one with tone
and the other without tone.

4 http://chinese.yabla.com — This resource has only four tones for each
pinyin, which does not have the neutral tone pronunciation. To obtain the
neutral tone feature, we compute the arithmetic mean of the features of the
other four tones.

5 http://github.com/mozillazg/python-pinyin

6 http://https://zh.m.wikisource.org/zh-hans/%E6%99%AE%E9%80%
9A%E8%AF%9D%ES5%BC%82%E8%AF%BBY%E8%AF%8D%E5%AE%A1%E9%
9F%B3%E8%A1%A8
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For the mode without tone, Chinese characters will be converted to
pinyin without tones only. Examples are the tokens shown in the row
of PO in Table 3, where PO stands for Pinyin w/o tones. Afterwards,
we train 128-dimension pinyin token embedding vectors using con-
ventional ‘GloVe’ character embeddings [53]. A lookup table between
pinyin without intonation (PO) and embedding vector is constructed
accordingly. Pinyin scripts that have the same pronunciation but dif-
ferent intonations will share the same glove embedding vector, such as
Jid and Jia in Table 3.

For the mode with tone, Chinese characters will be converted to
pinyin plus a number suggesting the tone. Examples are the tokens
shown in the row of PW in Table 3, where PW stands for Pinyin w/
tones. We use number 1 to 4 to represent four diacritics and number 0
to represent the neutral tone. Similarly, 128-dimension ‘GloVe’ pinyin
embedding vectors were trained.

In summary, we have four types of phonetic features, namely Ex04,
PW, Ex0 and PO. PO distinguishes from PW in removing intonations.
Two of them (Ex04, PW) distinguish from others by having intonations.
It is expected to have one question that how would one know the
correct intonation of pinyin scripts given their textual characters. Al-
though the online parser can give its statistical guess, the performance
and robustness cannot be evaluated and guaranteed. To address this
problem, we design a parser network with a reinforcement learning
model to learn the correct intonation of each pinyin. Details will be
presented in the following section.

3.4. DISA

3.4.1. Overview

This DISA network takes a sentence of Chinese characters as input.
It firstly converts each character to its corresponding pinyin (without
tones) through a lookup operation. Then the pinyin sequence will be
fed to an actor—critic network. For each pinyin (time step), a policy
network will randomly sample one out of five actions, where each
action denotes a tone. Then a feature/embedding of this specific pinyin
with tone is retrieved from a feature lookup module.

During exploration stage, the action will be randomly sampled.
During exploitation and prediction stages, the action will be the one
with maximum probability given the policy. This feature/embedding
sequence will then be fed to an LSTM network. Hidden states from the
LSTM will pass back to policy network for guiding action selection. The
final hidden state of the LSTM network will be fed to a softmax classifier
to obtain a sentence sentiment class distribution. A log probability of
ground-truth label will be treated as a delayed reward to tune the
policy network. Finally, a cross entropy loss will be computed against
the obtained sentiment class distribution to tune the critic network. A
graphical description is shown in Fig. 2, followed by details below.

State: For the environment, we used an LSTM to simulate the value
function (detailed later). The input to this LSTM is the sequence of
feature/embedding retrieved from the lookup module (detailed later),
namely x,, x,, ..., X,, ..., X, where x, is the feature for the tth pinyin in
the sentence. The mathematical representations of the LSTM cell are as
follows:

Jir=oWylx, by 1+by)

I, = c(Wilx; h_ 1+ bp)

C, = tanh(Welx,, hy_i] + be)
Cr=ft*ct—1+[t*5t

o, = o(W,[x;, h_11+b,)

h, = o, * tanh(C,)

(2)

where f,, I, and o, are the forget gate, input gate and output gate,

respectively. W,, W;, W,, b;, b, and b, are the weight matrix and bias

scalar for each gate. C, is the cell state and 4, is the hidden state output.
The state of the environment is defined as:

S;=[x,®h_&C_] 3
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Table 5

Actions in DISA network and meanings.
Action 0 1 2 3 4
Intonation Neutral = B ¥
Example a a a a a

where @ is a concatenation (same below). As shown in Formula (3), the
state is determined by the current feature input, the last LSTM hidden
output and the last LSTM cell memory.

Action: There are five actions in our environment, representing five
different tones. An example is shown in Table 5. If different action was
selected, then the corresponding intonation will be activated. Relevant
phonetic features will then be selected, as introduced in Section 3.4.3.
The action policy was implemented by a typical feedforward neural
network. Specifically, for a policy z(q, | S,) at time 7,

©(a, | S,) = tanh(W - S, + b) 4

where W and b are the weight matrix and bias scalar. g, is the action at
time 7. During exploration of training, action will be randomly selected
out of the above five. During exploitation of training and testing, the
action with the maximum probability will be selected.

Reward: The reward is computed at the end of each sentence when
the state/action trajectory comes to the terminal (delayed reward).
After the feature/embedding lookup module, the feature sequence is
fed to the LSTM critic network. A sentence sentiment class distribution
is computed as:

distr = 6(Wppy A + b piy) 5)

where W, and b, are weight matrix and bias scalar from the
softmax layer. 4, is the last hidden state output from the LSTM critic
network. distr'*X is the probability distribution of sentiment classes for
the sentence. X is the number of sentiment class. The reward (R) is
defined as:

R = log(P(ground | sent)) (6)

where P(ground | sent) stands for the probability of the ground-truth
label of the sentence given the distribution in Eq. (5).

3.4.2. Actor: policy network

As shown in the ‘Action’ above, the policy network random guesses
actions during the exploration stage in training. It will be updated
when a sentence input is fully traversed. Given the reward obtained
from Eq. (6), we used gradient descent method to optimize the policy
network [59]. In other words, we want to maximize:

J(0) = E,[R(S},a,,S,,a5,...,5,a;)]

L

=Y () [ 7ota | Spp(Sisy 1S @Ry, -
t

I
M=~ -

[T 7ot 1 SR,

t
Using the likelihood ratio (or REINFORCE [60] trick) to estimate
policy gradient, the gradient can be transformed to:

L
VgJ(0) = ) Ry Vologmy(a, | S))

t=1

(8)

3.4.3. Feature/embedding lookup

Recall that we have selected actions from actor network, where
each action denotes a tone for that pinyin, the function of this fea-
ture/embedding lookup module is to retrieve the correct features of
that specific pinyin with tone. Prior to the policy network, we have
collected phonetic features from five different tones of each pinyin and
order them from neutral tone feature to the fourth tone feature. The
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Fig. 2. DISA model structure for tone selection. C,, stands for the mth Chinese character in a sentence.
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P, denotes the pinyin for mth character without the tones. P,n represents

the pinyin for mth character with its nth tone. F,n is the feature/embedding vector for P, n.
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Fig. 3. An example of fused character feature/embedding lookup, where T, P, V
represent features/embeddings from corresponding modality. In the case of single
modality or bi-modality, relevant lookup table is constructed accordingly.

neutral tone to the fourth tone feature can be retrieved individually by
index ID number O to 4.

When an action is selected from the actor network, for example,
action 4 was selected for pinyin P, this lookup module will find the
fourth phonetic feature (index ID 4) of this pinyin, namely F;4 and
pass it to the LSTM critic network as the input x, in Eq. (2).

3.4.4. Critic: sentence model and loss computation

Introduced in the State before, the critic network was essentially
a sentence encoding model by an LSTM. We used gradient descent
method to update the critic network with the cross-entropy loss defined
as:

L=- Z P(ground | sent)log(P(pred | sent)) 9

Vsent
where P(ground | sent) and P(pred | sent) are the ground truth and
predicted probability in the Eq. (5), respectively.

3.5. Fusion of modalities

In the context of the Chinese language, textual embeddings have
been applied in various tasks and proved its effectiveness in encod-
ing semantics or sentiment [15-18,21,61,62]. Recently, visual features
pushed the performance of textual embedding further via a multimodal
fusion [22,23,63]. This is achieved due to the effective modeling of
compositionality of Chinese characters by the visual features. In this
work, we hypothesize that the use of phonetic features along with
textual and visual can improve the performance. Thus, we introduced
the following fusion method that fits with our DISA network, as in
Fig. 2.

+ Each Chinese character is represented by a concatenation of three

segments. Each segment represents one modality, see below:
char = [emby @ embp @ emby, ] (10)

where char is character representation. emby, embp, emb, are em-
beddings from text, phoneme and vision, respectively.
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Table 6
# of reviews in experimental datasets.
Weibo 1t168 Chn2000 Review-4 Review-5
Positive 1900 560 600 1975 2599
Negative 1900 458 739 879 1129
Sum 3800 1018 1339 2854 3728

There are other complex fusion methods available in the litera-
ture [64-66], however, we did not use them in our paper for three
reasons — (1) Fusion through concatenation is often proven effective
method [23,67,68], (2) it has the added benefit of simplicity, thus
allowing for the emphasis (contributions) of the system to remain with
the features themselves and (3) The designed fusion needs to fit in
with our reinforcement model framework. Fusion methods as in [22]
and [64] impose obstacles in the implementation with actor—critic
model. Thus, we used the above introduced fusion method, an example
of a fused feature/embedding lookup table is shown in Fig. 3.

4. Experiments and results

In this section, we start with introducing the experimental setup.
Experiments were conducted in six steps. Firstly, we compare unimodal
features. Secondly, we experiment on the possible fusion of modalities.
Thirdly, we compare cross domain validation performance between our
method with baselines. Next, we conduct ablation tests to validate the
contribution of phonetic features. More precisely, we also visualize dif-
ferent phonetic features/embeddings to understand how they improve
the performance.

4.1. Experimental setup

4.1.1. Datasets and features/embeddings

Datasets: We evaluate our method on five datasets: Weibo, 1t168,
Chn2000, Review-4 and Review-5. The first three datasets consist of
reviews extracted from micro-blog and review websites. The last two
datasets contain reviews from [69], where Review-4 has reviews from
computer and camera domains, and Review-5 contains reviews from
car and cellphone domains. The experimental datasets are shown in
Table 6.

Features/embeddings: For textual embeddings, we refer to the
pretrained character embedding lookup table trained with Glove in
Section 3.1. For phonetic experiments, we employ a pre-built tool
called online codes’ on the datasets to convert text to pinyin without
intonations (As we discussed in Section 3.3.2, this conversion achieves
as high as 97% accuracy.). Ex0 and Ex04 features were extracted from
audio files and stored as in Section 3.3.1. PO and PW embeddings
were also pretrained on the same textual corpus for training textual
embeddings. The corpus contains news of 8 million Chinese words,
which is equal to 38 million Chinese characters. For visual features,

7 http://github.com/mozillazg/python-pinyin
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we refer to the lookup table to convert characters to visual features as
in Section 3.2.

For experiments of multimodality, features from each individual
modality were concatenated into a lookup table. Examples are shown
in Fig. 3.

4.1.2. Setup and baselines

Setup: We use TensorFlow and Keras to implement our model. All
models use an Adam Optimizer with a learning rate of 0.001 and an L2-
norm regularizer of 0.01. Dropout rate is 0.5. Each mini-batch contains
50 samples. We randomly split each dataset to training, testing and
development sets per the ratio 6:2:2. We report the result of testing
set whose corresponding development set performs the best after 30
epochs. The above parameters were set with the use of a grid search on
the development data. We also experiment different splits of datasets,
whose results did not vary obviously.

The training procedure of our DISA network is as follows. Firstly, we
skip the policy network and directly train the LSTM critic network with
the training objective as Eq. (9). Secondly, we fix the parameters of
the LSTM critic network and train the policy network with the training
objective as Eq. (8). Lastly, we co-train all the modules together until
convergence. For the cases when no phonetic feature/embedding is
involved, for example pure textual or visual features, only the LSTM
is trained and tested. Glove was chosen as the textual embedding in
our model due to its performance in Table 7.

DISA variants: We introduce below the variants of our DISA net-
work. They differ in text representation features.

1. DISA (P): DISA network that used phonetic feature only, which
is the concatenation of Ex04 and PW.

2. DISA (T+P): DISA network that uses the concatenation of textual
embedding (glove) and phonetic feature (Ex04+PW).

3. DISA (P+V): DISA network that uses the concatenation of pho-
netic feature (Ex04+PW) and visual feature.

4. DISA (T+P+V): DISA network that uses the concatenation of
textual embedding (glove), phonetic feature (Ex04+PW) and
visual feature.

Baselines: Our proposed method is based on input features/
embeddings of Chinese characters. A handful number of the works on
Chinese text analysis aimed at improving Chinese word embeddings,
such as CWE [21], MGE [18]. Those who utilized visual features [22,
23] also aimed at word level. However, these cannot be considered
as comparable fair baselines to our model, our model is set up with
Chinese character embedding being its core foundation. There are two
major reasons for studying at character level. Firstly, pinyin pronunci-
ation system is designed for character level. The pinyin system does
not have corresponding pronunciations to Chinese words. Secondly,
character level will bypass Chinese word segmentation operation which
may induce errors. Conversely, using character-level pronunciation to
model word-level pronunciation will incur sequence modeling issues.
For instance, a Chinese word ‘4" is comprised of two characters, /%’
and 4. For textual embedding, the word can be treated as one single
unit by training a word embedding vector. For phonetic embedding,
however, we cannot treat the word as one single unit from the per-
spective of pronunciation. The correct pronunciation of the word is a
time sequence of character pronunciation of firstly /%’ and then 4. If
we work at word level, we have to come up with a representation of the
pronunciation of this word, such as an average of character phonetic
features etc. To make a fair comparison, we compare with character-
level methods below (all trained on the same corpus and character
embedding vector dimension was set to 128.):

1. Glove: An unsupervised embedding learning algorithm based on
co-occurrence (count). [53].

2. CBOW: Continuous Bag-of-words model which places context
words in the input layer and target word in the output layer [29].
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Table 7
Classification accuracy of unimodality in LSTM.
Weibo 1It168 Chn2000 Review-4 Review-5
GloVe 75.39 81.82 84.54 87.46 86.94
CBOW 72.39 78.75 81.18 85.11 84.71
Skip-gram 75.05 80.13 78.04 86.23 86.21
Visual 61.78 65.40 67.21 78.98 79.59
charCBOW 71.54 80.83 82.82 86.90 85.19
charSkipGram 71.86 82.10 81.63 85.21 84.84
Hsentic 73.65 80.23 79.09 84.76 73.31
DISA(Ex04) 67.28 84.69 78.18 81.88 83.38
Phonetic features DISA(PW) 67.80 83.73 77.45 85.37 84.18
DISA(P) 68.19 85.17 79.27 84.67 85.24

3. Skip-gram: The opposite of CBOW model, which predicts the
contexts given the target word [29].

4. Visual: Based on [22] and [54], a convolutional auto-encoder
(convAE) is built to extract compositionality of Chinese charac-
ters through the visual channel.

5. charCBOW: Component-enhanced character embedding built
on top of CBOW method by [16]. It delved into the radical
components of Chinese characters and enriched the character
representation with radical component.

6. charSkipGram: The Skip-gram variant of charCBOW.

7. Hsentic: Radical-based hierarchical embeddings, which encode
both radical- and character-level semantics (specifically tuned
for sentiment analysis [19]).

4.2. Experiments on unimodality

For textual embeddings, we have compared with state-of-the-art
embedding methods including GloVe, skip-gram, CBOW, charCBOW,
charSkipGram and Hsentic. As shown in Table 7, textual embeddings
(GloVe) achieve the best performance among all three modalities in
four datasets. This is due to the fact that they successfully encoded
the semantics and dependency between characters. We also find that
charCBOW and charSkipGram methods perform quite close to the
original CBOW and Skip-gram methods. They perform slightly but not
constantly better than their baselines. We conjecture this could be
caused by the relatively small size of our training corpus compared to
the original Chinese Wikipedia Dump training corpus. With the corpus
size increased, all embedding methods are expected to have improved
performance. It is without doubts, though, that the corpus we used still
presents a fair platform for all methods to compare.

We also notice that visual feature achieves the worst performance
among three modalities, which is within our expectations. As demon-
strated in [22], pure visual features are not representative enough to
obtain a comparable performance with the textual embedding. Last but
not least, our methods with phonetic features perform better than the
visual feature. Although visual features capture compositional informa-
tion of Chinese characters, they fail to distinguish different meanings
of characters that have same writing but different tones. These tones
could largely alter the sentiment of Chinese words and further affect
sentiment of sentence.

As for phonetic representation, three types of features were tested,
namely Ex04, PW and P (namely Ex04+PW). The last one is the
concatenation of the previous two. Our first observation is that pho-
netic features alone can hardly compete with textual embeddings. Al-
though they beat textual embeddings in It168 dataset, they consistently
fell behind textual embeddings. This is still within our expectations,
as suggested by Tseng in [70], ‘Phonology and phonetics alone are
insufficient in predicting the actual output of sentences’.

If we further refer to Table 4, we can find that on average 2 to
3 characters share one same pinyin with tone. That means a pure
phonetic representation may wipe out the 1 out of 2 or 3 (33%-50%)
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Table 8

Classification accuracy of multimodality. (T and V represent textual and visual,
respectively. + means the fusion operation. P is the concatenated phonetic feature
of the one extracted from audio (Ex04) and Pinyin w/ intonation (PW).)
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Table 9

Cross-domain evaluation. Datasets on the first column are the training sets. Datasets
on the first row are the testing sets. The second column represents various baselines
and our proposed method.

Weibo 1t168 Chn2000 Review-4 Review-5 Weibo  1t168 Chn2000 Review-4  Review-5
GloVe 75.39 81.82 84.54 87.46 86.94 Hsentic 66.47  61.84 64.93 63.71
Visual 61.78 65.40 67.21 78.98 79.59 Weibo charCBOW 67.55  64.08 62.09 67.78
charCBOW 71.54 80.83 82.82 86.90 85.19 charSkipGram 65.29  59.60 53.22 49.49
charSkipGram 71.86 82.10 81.63 85.21 84.84 DISA(T+P) 73.68  66.55 69.16 71.01
Hsentic 73.65 80.23 79.09 84.76 73.31 Hsentic 59.15 59.30 69.76 57.62
DISA(P) 68.19 85.17 7927 84.67 85.24 1168 charCBOW 57.54 65.05 72.25 68.13
DISA(T+P) 75.75 86.12 85.45 90.42 90.03 charSkipGram ~ 54.54 64.68 68.19 64.38
DISA(T+V) 73.79 85.65 83.27 89.37 88.70 DISA(T+P) 63.75 68.36 77.00 74.07
DISA(P+V) 76.01 82.30 81.09 86.76 87.23 Heentic 5636 60.67 52.03 4477
DISA(T+P+V) 74.32 77.99 78.18 87.63 89.49 chnzoop ChATCBOW 5623 7040 61.77 63.36
charSkipGram  51.99 68.53 62.47 62.77
DISA(T+P) 60.50  68.90 68.64 69.02
. L . - Hsentic 58.15  73.55  59.22 80.55
semantics frorr'l the text. fl"hls inevitably will reduce the possibility to revionq  ChATCBOW 5191 7296 58.40 0.7
correctly classify the sentiment. charSkipGram ~ 54.65  71.88  65.27 80.31
As we can see each modality has its own capacity to encode seman- DISA(T+P) 58.15 77.51 65.45 88.70
tics, it is expected to take advantage of the complimentary information Hsentic 58.44 7473  69.08 83.15
from multiple modalities for the sentiment analysis task. The results are Revi charCBOW 56.73 7247  57.06 85.77
eview-5 . -
shown in the next section. charSkipGram ~ 56.44  75.32  66.77 83.67
DISA(T+P) 62.06 85.65 69.09 88.85

4.3. Experiments on fusion of modalities

In this set of experiments, we evaluate the fusion of every possible
combination of modalities. After extensive experimental trials, we sum-
marize that the concatenation of Ex04 and PW embeddings (denoted
as P) performed best among all phonetic feature combinations. Thus
we use it as phonetic feature in the fusion of modalities. The results
shown in Table 8 suggest that the best performance is achieved by
fusing textual and phonetic features.

We notice that phonetic features when fused with textual or visual
features, improve the performance of both textual and visual unimodal
classifiers consistently. This validates our hypothesis that phonetic
features are an important factor in representing semantics, which leads
to an improvement in Chinese sentiment analysis performance. A p-
value of 0.007 in the paired t-test between with and without phonetic
features suggested that the best performing improvement of integrating
phonetic feature is statistically significant. The integration of multiple
modalities could take advantages of information from different modal-
ities. However, we notice that, in most of the cases, tri-modal models
underperform bi-modal models. One disadvantage brought by using
more modalities is the increase of number of parameters. We conjecture
that a larger set of learnable parameters leads to poor generalizability
when the training sets in our experiments only consist of instances of
less than 4000.

Furthermore, the information redundancy becomes more severe
when combining features across different modalities. In other words,
there might be the marginal effect of using additional modality. We
will illustrate this point with examples. As aforementioned, Chinese
character is made of symbols (or called radicals). Some symbols func-
tion as morphemes, while some symbols function as phonemes. For
instance, the character ‘JX’ consists of two symbols, 47 and ‘. The
pronunciation of YK’ (fengl) is dominated by the symbol X’ (feng1),
which is the same for phonetic features. Meanwhile, ‘X’ contributes
the most to the visual image of X, the visual feature of Jx can also
somehow encodes the information brought by ‘X",

After we compare T with T+P and T+V, the performance increase
induced by P is 1.40% higher than by V on average. It is apparent
to conclude that phonetic feature is better at encoding semantics than
visual features. The fusion of phonetic and textual embeddings achieve
the best performance in all of the cases. It indicates that the infor-
mation encoded in the phonetic feature complements that of textual
embedding.
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4.4. Cross-domain evaluation

In this section, we examine how our model performs across different
domains and datasets in order to validate the generalizability of our
proposed method. Particularly for our model, we firstly pretrain the
LSTM critic network on the training set. Then we fix the parameters
of critic network and train the policy network on the same training
set. Next, we co-train the LSTM critic network and policy network for
30 epochs. For other baselines, an LSTM network is trained using the
same training set. By the end of each epoch, the development set of
this training dataset and the other four datasets are tested. The epoch
results are recorded. In the end, the testing result of the epoch which
has the best development result are reported. The final results of the
state-of-the-art methods are shown in Table 9.

Results show that all methods reduce their performance compared
to single dataset experiments due to the internal diversity of differ-
ent dataset. Even though, our method still perform better than other
baselines by an average of 6.50% in accuracy. In addition to absolute
performance, we also compute the average performance loss for each
method across different datasets between single dataset case and cross-
dataset case. It shows that our method has the least performance drop,
which is 14.25%. The performance drop for Hsentic, charCBOW and
charSkipGram methods are 16.09%, 15.69%, 17.16% respectively. We
think it might be ascribed to that the proportion of shared phonetic
tokens among datasets is larger than the portion of shared textual
characters (1870 phonetic tokens Vs. 3500 textual characters). Thus,
phonetic features will have better transferability than textual features.
Fig. 4 illustrates the proportion of common phonetic tokens as well as
common textual tokens between each pair of datasets. The result in
the figure agrees with our initial analysis. We also noted that cross-
domain results fall similar to single-domain results when the training
and testing tests tend to be similar domains.

4.5. Ablation tests

We conduct ablation tests in two steps: validating phonetic features
and integration of phonetic features. The first step validates the contri-
bution of phonetic features. The second step examines which specific
combination of phonetic features works the best.
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Fig. 4. The proportion of tokens in testing sets that also appear in training sets. Rows
are training sets(T denotes the textual token and P denotes the phonetic token) Columns

are testing sets.

Table 10
Performance comparison between learned and random generated phonetic feature.

Weibo It168 Chn2000 Review-4 Review-5
Random phonetic feature (rand) 53.83 56.85 55.71 69.20 69.77
Learned Ex0 66.49 84.21 77.82 81.36 83.24
honetic Ex04 67.28 84.69 78.18 81.88 83.38
?eature PO 64.28 82.30 77.09 83.97 82.71
PW 67.80 83.73 77.45 85.37 84.18

4.5.1. Validating phonetic feature

So far, we have examined the effectiveness of our model as a whole
by comparing it with different baselines. In this section, we break down
the proposed methods into a reinforcement learning framework and a
set of features. First of all, we would like to validate if the performance
gain mainly results from the reinforcement learning framework. To
this end, we replace the phonetic features with random features. In
particular, we generate random real-valued vectors as random phonetic
feature for each character. Each dimension of the random phonetic
feature vector is a float number between —1 to 1 sampled from a
Gaussian distribution. Then, we use this random feature vector to
represent each Chinese character and yielded the results in Table 10.

In the comparison between the learned phonetic feature and random
phonetic feature, we can observe that the learned feature outperforms
random feature with at least 13% in all datasets. This result indicates
that the improvement of performance is due to the contribution of
learned phonetic feature but not the training of classifiers. Phonetic
feature itself is the cause and similar performance will not be achieved
just by introducing random features.

We plot the results in Fig. 5 on the left to amplify the difference.
Moreover, we find that, whether extracted from audio clips or learned
from pinyin corpus, phonetic features that contain intonation (Ex04 and
PW) perform better than those without intonation (EX0 and PO) in all
our experiments.

This proves our initial argument that intonation plays an important
role in representing Chinese sentiment. Nevertheless, we also discover
that the performances of various learned phonetic features are not
persistent. PW prevails in three datasets while Ex04 wins in the other
two datasets. As the best two phonetic features are either extracted
from audio clips or learned from pinyin corpus, it is expected to take the
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Table 11
Performance comparison between different combinations of phonetic features.
Weibo 1t168 Chn2000 Review-4 Review-5

Ex0 66.49 84.21 77.82 81.36 83.24
Ex04 67.28 84.69 78.18 81.88 83.38
PO 64.28 82.30 77.09 83.97 82.71
PW 67.80 83.73 77.45 85.37 84.18
Ex0+PO 65.45 81.82 77.09 83.98 83.38
Ex0+PW 67.80 82.30 78.91 84.84 84.71
Ex04+PO 67.14 80.38 77.45 83.80 84.84
Ex04+PW 68.19 85.17 79.27 84.67 85.24

advantage of both sides. Thus we propose the ablation test of phonetic
feature in different combination.

4.5.2. Integration of phonetic features

We combine both extracted phonetic features and learned phonetic
features to form four variations. The results are shown in Table 11 and
plotted in Fig. 5 on the right.

As expected, the combination of Ex04 and PW prevails in four
datasets and performs close to the best in the remaining dataset. Specif-
ically, when we compare Ex04+PW with Ex04, there is an average
improvement of 1.43% across datasets. We believe the improvement
was due to the semantic information provided by PW feature, as it was
trained on the pinyin corpus. Contextual relation was designed to be
encoded in embeddings. By merging embedding features to extracted
features, the combination feature would also encode certain semantics,
which we would show in the following section. Correspondingly, if we
compare Ex044+PW with PW, the performance improvement was 0.80%
on average.

This would be explainable due to Ex04 features extracted informa-
tion that can only be conveyed in pronunciation. As we introduced
in the start, the deep phonemic orthography has enabled Chinese
pronunciation to encode meanings that were not represented in the
text. The English text, in contrast, originally was designed to mimic pro-
nunciation [51]. Due to the heterogeneity between textual and phonetic
representation of the Chinese language, it is reasonable to unveil the
magic behind Chinese phonetics. In summary, we have shown that both
the intonation variation and deep phonemic orthography contributed to
Chinese sentiment analysis task.

4.6. Visualization

In this section, we visualize four kinds of phonetic-related embed-
dings. The are Ex04, PW, Ex04+PW (P) and T+P.

As shown in Fig. 6(a), pinyin that have similar pronunciations (vow-
els) are close to each other in the embedding space. This observation
matches our experimental purpose that the Ex04 feature will encode
phonetic information (such as similarity) among different pronuncia-
tions. Secondly, as can be seen in Fig. 6(b), we visualize the embeddings
of PW. Since it was learned on the phonetic corpus, certain semantics
are expected to be encoded. In reality, we do find semantic closeness
in the visualization. The squares are some examples we spotted. For in-
stance, ‘Niu2’ and ‘Nai3’ are together due to ‘Niu2 Nai3(milk)’. ‘Dian4’
and ‘Nao3’ are together due to ‘Dian4 Nao3 (computer)’. ‘Jian3’ and
‘Cha2’ are together due to ‘Jian3 Cha2 (inspection)’. Next, we visualize
the combined embedding, Ex04+PW, which is also the main phonetic
feature we use in our model in Fig. 6(c). Unsurprisingly, we observe
that this feature combines the characteristics both from Ex04 and PW
because of this embedding clusters not only phonetic similarity but also
semantic similarity. Finally, we visualize the fused embedding of T+P in
Fig. 6(d). In addition to the characteristics displayed in Ex04+PW (P),
the fused T+P appends with Chinese textual characters. For example,
YK Mu4 and 94° Yu4 stayed together because of semantics(bath). &’
Huan2 and ‘¥’ Huan2 stayed together because of phonetics. It can be
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Fig. 5. Performance comparison between phonetic ablation test groups. Rand denotes random generated embeddings. Ex0/Ex04 represent Ex embeddings without/with tones. The

same is for PO/PW. + denotes a concatenation operation.
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(c) Phonetic embedding Ex04+PW (P)

Fig. 6. Selected t-SNE visualization of four kinds of phonetic-related embeddings.

concluded that the fused embeddings capture both certain phonetic
information from phonetic features and semantic information from
textual embeddings. These two sources of information when combine
combined offers a finer and more accurate representation of Chinese
characters, which is beneficial to sentiment analysis. This shows us why
phonetic-enrich text representation could level up the performance in
sentiment analysis compared with pure textual representation.

5. Conclusion

Modern Chinese pronunciation system (pinyin) provides a new per-
spective in addition to the standard pictogram-based writing system.
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(d) Phonetic embedding T+P

Circles cluster phonetic similarity. Squares cluster semantic similarity.

Due to its deep phonemic orthography and intonation variations, it is
expected to bring new contributions to the statistical representation
of Chinese language, especially in complex NLP tasks like sentiment
analysis.

To the best of our knowledge, we are the first to present an approach
to learn phonetic information out of pinyin (both from audio clips and
pinyin token corpus) and design a network to disambiguate intonations.
We integrate phonetic information with textual and visual features to
create novel multimodal representations for Chinese words. Experi-
ments on five datasets portray the positive contribution of phonetic
information to Chinese sentiment analysis.
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Even though our method only examines Chinese language, it sug-
gests greater potential for languages that also carry the deep phonemic
orthography characteristic, such as Arabic and Hebrew. In the future,
we plan to extend this work by exploring better fusion methods to com-
bine different modalities and by also integrating word-level phonetic
information.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

E. Cambria, H. Wang, B. White, Guest editorial: Big social data analysis,
Knowl.-Based Syst. 69 (2014) 1-2.

S. Poria, E. Cambria, R. Bajpai, A. Hussain, A review of affective computing:
From unimodal analysis to multimodal fusion, Inf. Fusion 37 (2017) 98-125.
R. Sukthanker, S. Poria, E. Cambria, R. Thirunavukarasu, Anaphora and
coreference resolution: A review, Inf. Fusion 59 (2020) 139-162.

I. Chaturvedi, E. Cambria, R. Welsch, F. Herrera, Distinguishing between facts
and opinions for sentiment analysis: Survey and challenges, Inf. Fusion 44 (2018)
65-77.

I. Chaturvedi, R. Satapathy, S. Cavallari, E. Cambria, Fuzzy commonsense rea-
soning for multimodal sentiment analysis, Pattern Recognit. Lett. 125 (264-270)
(2019).

A. Valdivia, V. Luzén, E. Cambria, F. Herrera, Consensus vote models for
detecting and filtering neutrality in sentiment analysis, Inf. Fusion 44 (2018)
126-135.

E. Cambria, Y. Li, F. Xing, S. Poria, K. Kwok, SenticNet 6: Ensemble application
of symbolic and subsymbolic Al for sentiment analysis, in: CIKM, 2020, pp.
105-114.

A. Hussain, E. Cambria, Semi-supervised learning for big social data analysis,
Neurocomputing 275 (2018) 1662-1673.

M.S. Akhtar, A. Ekbal, E. Cambria, How intense are you? Predicting intensities
of emotions and sentiments using stacked ensemble, IEEE Comput. Intell. Mag.
15 (1) (2020) 64-75.

W. Li, L. Zhu, Y. Shi, K. Guo, E. Cambria, User reviews: Sentiment analysis using
lexicon integrated two-channel CNN-LSTM family models, Appl. Soft Comput. 94
(106435) (2020).

I. Chaturvedi, S. Cavallari, E. Cambria, R. Welsch, Genetic programming for
domain adaptation in product reviews, in: IEEE Congress on Evolutionary
Computation, 2020.

A. Valdivia, E. Martinez-Camara, I. Chaturvedi, M. Luzon, E. Cambria, Y.-S. Ong,
F. Herrera, What do people think about this monument? Understanding negative
reviews via deep learning, clustering and descriptive rules, J. Ambient Intell.
Humanized Comput. 11 (1) (2020) 39-52.

C. Huang, H. Zhao, Chinese word segmentation: A decade review, J. Chin. Inf.
Process. 21 (3) (2007) 8-20.

H. Peng, E. Cambria, A. Hussain, A review of sentiment analysis research in
Chinese language, Cogn. Comput. 9 (4) (2017) 423-435.

Y. Sun, L. Lin, N. Yang, Z. Ji, X. Wang, Radical-enhanced Chinese character
embedding, in: LNCS, Vol. 8835, 2014, pp. 279-286.

Y. Li, W. Li, F. Sun, S. Li, Component-enhanced Chinese character embeddings,
2015, arXiv preprint arXiv:1508.06669.

X. Shi, J. Zhai, X. Yang, Z. Xie, C. Liu, Radical embedding: Delving deeper to
Chinese radicals, Short Pap. 2 (2015) 594.

R. Yin, Q. Wang, P. Li, R. Li, B. Wang, Multi-granularity Chinese word
embedding, in: EMNLP, 2016, pp. 981-986.

H. Peng, E. Cambria, X. Zou, Radical-based hierarchical embeddings for Chinese
sentiment analysis at sentence level, in: FLAIRS, 2017, pp. 347-352.

C. Hansen, Chinese ideographs and western ideas, J. Asian Stud. 52 (2) (1993)
373-399.

X. Chen, L. Xu, Z. Liu, M. Sun, H. Luan, Joint learning of character and word
embeddings, in: IJCAL, 2015, pp. 1236-1242.

T.-r. Su, H.-y. Lee, Learning Chinese word representations from glyphs of
characters, in: EMNLP, 2017, pp. 264-273.

F. Liu, H. Lu, C. Lo, G. Neubig, Learning character-level compositionality with
visual features, in: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vol. 1, 2017, pp. 2059-2068.
R. Frost, L. Katz, S. Bentin, Strategies for visual word recognition and orthograph-
ical depth: A multilingual comparison, J. Exp. Psychol. Hum. Percept. Perform.
13 (1) (1987) 104.

L. Katz, R. Frost, The reading process is different for different orthographies: The
orthographic depth hypothesis, Adv. Psychol. Amsterdam 94 (1992) 67.

98

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Information Fusion 70 (2021) 88-99

T. Zhang, M. Huang, L. Zhao, Learning structured representation for text
classification via reinforcement learning, in: Thirty-Second AAAI Conference on
Artificial Intelligence, 2018, pp. 6053-6060.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A neural probabilistic language
model, J. Mach. Learn. Res. 3 (Feb) (2003) 1137-1155.

R. Collobert, J. Weston, A unified architecture for natural language processing:
Deep neural networks with multitask learning, in: Proceedings of the 25th
International Conference on Machine Learning, ACM, 2008, pp. 160-167.

T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, 2013, arXiv preprint arXiv:1301.3781.

H.-P. Zhang, H.-K. Yu, D.-Y. Xiong, Q. Liu, HHMM-based Chinese lexical
analyzer ICTCLAS, in: Proceedings of the Second SIGHAN Workshop on Chinese
Language Processing, Vol. 17, Association for Computational Linguistics, 2003,
pp. 184-187.

M. Sun, X. Chen, K. Zhang, Z. Guo, Z. Liu, Thulac: An Efficient Lexical Analyzer
for Chinese, Tech. Rep., Technical Report, 2016.

AF. Chao, H.-L. Yang, Using Chinese radical parts for sentiment analysis and
domain-dependent seed set extraction, Comput. Speech Lang. 47 (2018) 194-213.
H. Zhang, S. Sun, Y. Hu, J. Liu, Y. Guo, Sentiment classification for Chinese text
based on interactive multitask learning, IEEE Access 8 (2020) 129626-129635.
Y. Li, S. Wang, Y. Ma, Q. Pan, E. Cambria, Popularity prediction on vacation
rental websites, Neurocomputing 412 (2020) 372-380.

A. Khatua, A. Khatua, E. Cambria, Predicting political sentiments of voters from
Twitter in multi-party contexts, Appl. Soft Comput. 97 (106743) (2020).

C. Angulo, Z. Falomir, D. Anguita, N. Agell, E. Cambria, Bridging cognitive
models and recommender systems, Cogn. Comput. 12 (2) (2020) 426-427.

D. Camacho, A. Panizo-LLedot, G. Bello-Orgaz, A. Gonzalez-Pardo, E. Cambria,
The four dimensions of social network analysis: An overview of research
methods, applications, and software tools, Inf. Fusion 63 (2020) 88-120.

Y. Ma, K.L. Nguyen, F. Xing, E. Cambria, A survey on empathetic dialogue
systems, Inf. Fusion 64 (2020) 50-70.

D. Tang, B. Qin, T. Liu, Document modeling with gated recurrent neural network
for sentiment classification, in: Proceedings of the 2015 conference on empirical
methods in natural language processing, 2015, pp. 1422-1432.

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention
networks for document classification, in: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2016, pp. 1480-1489.

1. Chaturvedi, E. Ragusa, P. Gastaldo, R. Zunino, E. Cambria, Bayesian network
based extreme learning machine for subjectivity detection, J. Franklin Inst. 355
(4) (2018) 1780-1797.

Y. Kim, Convolutional neural networks for sentence classification, 2014, arXiv
preprint arXiv:1408.5882.

B. Pang, L. Lee, S. Vaithyanathan, Thumbs up?: sentiment classification using
machine learning techniques, in: Proceedings of the ACL-02 Conference on
Empirical Methods in Natural Language Processing, Vol. 10, Association for
Computational Linguistics, 2002, pp. 79-86.

P. Chikersal, S. Poria, E. Cambria, A. Gelbukh, C.E. Siong, Modelling public
sentiment in Twitter: Using linguistic patterns to enhance supervised learning,
in: Computational Linguistics and Intelligent Text Processing, Springer, 2015, pp.
49-65.

D. Ma, S. Li, X. Zhang, H. Wang, Interactive attention networks for aspect-
level sentiment classification, in: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, AAAI Press, 2017, pp. 4068-4074.

H. Peng, Y. Ma, Y. Li, E. Cambria, Learning multi-grained aspect target sequence
for Chinese sentiment analysis, Knowl.-Based Syst. 148 (2018) 167-176.

Y. Ma, H. Peng, T. Khan, E. Cambria, A. Hussain, Sentic LSTM: A hybrid
network for targeted aspect-based sentiment analysis, Cogn. Comput. 10 (4)
(2018) 639-650.

S.L. Lo, E. Cambria, R. Chiong, D. Cornforth, Multilingual sentiment analysis:
From formal to informal and scarce resource languages, Artif. Intell. Rev. 48 (4)
(2017) 499-527.

S. Cao, W. Lu, J. Zhou, X. Li, cw2vec: Learning Chinese word embeddings
with stroke n-gram information, in: Thirty-Second AAAI Conference on Artificial
Intelligence, 2018, pp. 5053-5061.

H. Shu, R.C. Anderson, N. Wu, Phonetic awareness: Knowledge of orthography—
phonology relationships in the character acquisition of Chinese children, J. Educ.
Psychol. 92 (1) (2000) 56.

K.H. Albrow, The English Writing System: Notes Towards a Description,
Longman, 1972.

J.H.-w. Hsiao, R. Shillcock, Analysis of a Chinese phonetic compound database:
Implications for orthographic processing, J. Psycholinguist. Res. 35 (5) (2006)
405-426.

J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word
representation, in: EMNLP, 2014, pp. 1532-1543.

J. Masci, U. Meier, D. Ciresan, J. Schmidhuber, Stacked convolutional auto-
encoders for hierarchical feature extraction, in: International Conference on
Artificial Neural Networks, Springer, 2011, pp. 52-59.

Y. Xia, E. Cambria, A. Hussain, H. Zhao, Word polarity disambiguation using
Bayesian model and opinion-level features, Cogn. Comput. 7 (3) (2015) 369-380.


http://refhub.elsevier.com/S1566-2535(21)00011-7/sb1
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb1
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb1
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb2
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb2
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb2
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb3
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb3
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb3
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb4
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb4
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb4
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb4
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb4
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb5
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb5
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb5
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb5
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb5
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb6
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb6
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb6
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb6
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb6
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb7
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb7
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb7
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb7
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb7
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb8
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb8
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb8
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb9
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb9
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb9
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb9
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb9
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb10
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb10
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb10
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb10
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb10
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb11
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb11
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb11
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb11
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb11
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb12
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb12
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb12
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb12
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb12
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb12
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb12
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb13
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb13
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb13
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb14
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb14
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb14
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb15
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb15
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb15
http://arxiv.org/abs/1508.06669
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb17
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb17
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb17
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb18
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb18
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb18
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb19
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb19
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb19
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb20
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb20
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb20
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb21
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb21
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb21
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb22
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb22
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb22
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb24
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb24
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb24
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb24
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb24
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb25
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb25
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb25
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb27
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb27
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb27
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb28
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb28
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb28
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb28
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb28
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb30
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb30
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb30
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb30
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb30
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb30
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb30
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb31
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb31
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb31
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb32
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb32
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb32
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb33
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb33
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb33
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb34
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb34
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb34
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb35
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb35
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb35
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb36
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb36
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb36
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb37
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb37
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb37
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb37
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb37
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb38
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb38
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb38
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb41
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb41
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb41
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb41
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb41
http://arxiv.org/abs/1408.5882
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb43
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb43
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb43
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb43
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb43
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb43
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb43
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb44
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb44
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb44
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb44
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb44
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb44
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb44
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb45
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb45
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb45
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb45
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb45
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb46
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb46
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb46
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb47
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb47
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb47
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb47
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb47
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb48
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb48
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb48
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb48
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb48
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb50
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb50
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb50
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb50
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb50
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb51
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb51
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb51
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb52
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb52
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb52
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb52
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb52
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb53
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb53
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb53
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb54
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb54
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb54
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb54
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb54
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb55
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb55
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb55

H. Peng et al.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

A. Benjamin, History and prospect of Chinese romanization, Chin. Librariansh.
(1997).

F. Eyben, M. Wollmer, B. Schuller, Opensmile: the munich versatile and
fast open-source audio feature extractor, in: Proceedings of the 18th ACM
International Conference on Multimedia, ACM, 2010, pp. 1459-1462.

X. Cao, Pu tong hua yi du ci shen yin, Zhongguoyuwen (1) (2002) 82-87.

R.S. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in: Advances in Neural
Information Processing Systems, 2000, pp. 1057-1063.

R.J. Williams, Simple statistical gradient-following algorithms for connectionist
reinforcement learning, Mach. Learn. 8 (3-4) (1992) 229-256.

B. Ma, Q. Qi, J. Liao, H. Sun, J. Wang, Learning Chinese word embeddings from
character structural information, Comput. Speech Lang. 60 (101031) (2020).

Z. Wang, Z. Huang, J. Gao, Chinese text classification method based on BERT
word embedding, in: ICMAI, 2020, pp. 66-71.

H.-Y. Chen, S.-H. Yu, S.-d. Lin, Glyph2Vec: Learning Chinese out-of-vocabulary
word embedding from glyphs, in: ACL, 2020, pp. 2865-2871.

A. Zadeh, M. Chen, S. Poria, E. Cambria, L.-P. Morency, Tensor fusion network
for multimodal sentiment analysis, in: EMNLP, 2017, pp. 1103-1114.

99

[65]

[66]

[67]

[68]

[69]

[70]

Information Fusion 70 (2021) 88-99

N. Majumder, D. Hazarika, A. Gelbukh, E. Cambria, S. Poria, Multimodal
sentiment analysis using hierarchical fusion with context modeling, Knowl.-Based
Syst. 161 (2018) 124-133.

E. Cambria, N. Howard, J. Hsu, A. Hussain, Sentic blending: Scalable multimodal
fusion for continuous interpretation of semantics and sentics, in: IEEE SSCI,
Singapore, 2013, pp. 108-117.

C.G. Snoek, M. Worring, A.W. Smeulders, Early versus late fusion in semantic
video analysis, in: Proceedings of the 13th Annual ACM International Conference
on Multimedia, ACM, 2005, pp. 399-402.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-
scale video classification with convolutional neural networks, in: Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, 2014, pp.
1725-1732.

W. Che, Y. Zhao, H. Guo, Z. Su, T. Liu, Sentence compression for aspect-based
sentiment analysis, IEEE/ACM Trans. Audio Speech Lang. Process. 23 (12) (2015)
2111-2124.

C.-y. Tseng, An acoustic phonetic study on tones in Mandarin Chinese, Thesis
(1983) 0438.


http://refhub.elsevier.com/S1566-2535(21)00011-7/sb56
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb56
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb56
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb57
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb57
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb57
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb57
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb57
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb58
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb59
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb59
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb59
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb59
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb59
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb60
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb60
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb60
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb61
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb61
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb61
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb62
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb62
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb62
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb63
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb63
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb63
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb64
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb64
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb64
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb65
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb65
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb65
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb65
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb65
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb66
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb66
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb66
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb66
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb66
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb67
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb67
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb67
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb67
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb67
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb69
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb69
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb69
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb69
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb69
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb70
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb70
http://refhub.elsevier.com/S1566-2535(21)00011-7/sb70

	Phonetic-enriched text representation for Chinese sentiment analysis with reinforcement learning
	Introduction
	Related work
	Chinese Textual embedding
	Chinese Representation
	Sentiment analysis and Chinese phonetics

	Model
	Textual embedding
	Training visual features
	Learning phonetic features
	Extracted feature from audio clips (Ex0, Ex04)
	Learned feature from pinyin corpus (PO, PW)

	DISA
	Overview
	Actor: policy network
	Feature/embedding lookup
	Critic: sentence model and loss computation

	Fusion of modalities

	Experiments and results
	Experimental setup
	Datasets and features/embeddings
	Setup and baselines

	Experiments on unimodality
	Experiments on fusion of modalities
	Cross-domain evaluation
	Ablation tests
	Validating phonetic feature
	Integration of phonetic features

	Visualization

	Conclusion
	Declaration of competing interest
	References


