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Abstract—Technology has enabled anyone with an Internet
connection to easily create and share their ideas, opinions and
content with millions of other people around the world. Much
of the content being posted and consumed online is multimodal.
With billions of phones, tablets and PCs shipping today with
built-in cameras and a host of new video-equipped wearables like
Google Glass on the horizon, the amount of video on the Internet
will only continue to increase. It has become increasingly difficult
for researchers to keep up with this deluge of multimodal content,
let alone organize or make sense of it. Mining useful knowledge
from video is a critical need that will grow exponentially, in
pace with the global growth of content. This is particularly
important in sentiment analysis, as both service and product
reviews are gradually shifting from unimodal to multimodal.
We present a novel method to extract features from visual and
textual modalities using deep convolutional neural networks. By
feeding such features to a multiple kernel learning classifier,
we significantly outperform the state of the art of multimodal
emotion recognition and sentiment analysis on different datasets.

Index Terms—Multimodal sentiment analysis; Deep learning;
Convolutional neural networks; Multiple kernel learning

I. INTRODUCTION

Sentiment extraction from text has made considerable

progress in the past few years [1], [2]. People, however, are

gradually shifting from text to video to express their opinion

about a product or service, as it is now much easier and faster

for them to produce and share multimodal content [3]. For the

same reasons, potential customers are now more inclined to

browse for video reviews of the product they are interested in,

rather than looking for lengthy written reviews [4]. Another

reason for doing this is that, while trustable written reviews

are quite hard to find, searching for good video reviews is

as easy as typing the name of the product on YouTube and

choosing the clips with more views [5].

This leads to the need for identifying sentiment and emo-

tions from video as a source of multimodal information. How-

ever, there are major challenges which need to be overcome,

e.g., expressiveness of opinion varies widely from person to

person. Some people express their opinions more vocally,

some more visually and others rely exclusively on logic and

express little emotion. Furthermore, plenty of research has

been conducted in the field of audio-visual emotion recog-

nition.

Some recent work has also been conducted on fusing dif-

ferent modalities to detect emotions and polarity from videos

[6], [7], [8]. This paper conducts extensive research on the

different facets of this topic and aims to solve the following

two questions:

1) Is a common framework useful for both multimodal

emotion recognition and multimodal sentiment analysis?

2) Can audio, visual and textual features jointly enhance

the performance of sentiment analysis classifiers?

In this paper, we propose a temporal convolutional neural

network (CNN) where each pair of images at time t and t+ 1
are combined into a single image. Such a model is sensitive

to sequence of images and learns a dictionary of features that

are portable across languages. In a deep CNN, each hidden

layer is obtained by convolving a matrix of weights with the

matrix of activations at the layer below and the weights are

trained using back propagation [9].

Furthermore, we have additional layers of recurrent neurons

in the deep model. Recurrent neural networks (RNN) have

feedback connections among neurons that can model depen-

dencies in time sequences. Here, each hidden layer state is a

function of the previous state, which can be further expanded

as a function of all the previous states. In [10], the authors

proposed convolutional RNNs to capture spatial structure

information in static images. In contrast, our model uses RNN

to capture spatial and temporal patterns that are inherent in

video sequence. Our experiments showed that while using

only RNN or deep CNN does not provide good classifications,

combining the two models results in tremendous speed up and

accuracy.

Multiple kernel learning (MKL) is a feature selection

method where features are organized into groups and each

group has its own kernel function [11]. MKL further improved

our results, as it is able to combine data from different

modalities effectively. Figure 1 illustrates the convolutional

recurrent multiple kernel learning (CRMKL) model, which

combines sentiment features in audio, video and text. In [12],

the authors propose the use of a multi-resolution CNN to

capture temporal features in YouTube videos. However, to our

knowledge, this type of temporal CNN has not been previously

used for sentiment analysis.
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Fig. 1. The CRMKL model combining sentiment features in audio, video and text.

The organization of the paper is as follows: Section II

reviews related works and datasets on multi-modal sentiment

detection; Section III introduces the datasets used in our

evaluation; Section IV provides the preliminary concepts nec-

essary to understand the present work; Section V describes in

detail the convolutional recurrent MKL framework for feature

extraction and fusion from different modalities; finally, in

Section VI we validate our method on different datasets.

II. RELATED WORK AND CONTRIBUTIONS

Traditional methods could only classify text into different

topics irrespective of user interests. In contrast, sentiment is

an ordinal variable that can rank user interests in a sequential

order. Sentiment prediction requires understanding of the

sentence context and, hence, is a much more difficult task than

topic classification. While sentiment prediction only identifies

positive or negative customer experience, emotion recognition

accounts for specific emotions, which can be used to create

resonance among reviews for a certain product.

Recent work on text modality has used CNN for sentiment-

related tasks such as sarcasm detection [13] and aspect-based

opinion mining [14]. [15] developed a facial expression coding

system (FACS) and six facial expressions that are able to

provide sufficient clues to detect emotions. Recent studies on

speech-based emotion analysis [4] have focused on identifying

several acoustic features. One of the earliest works on fusing

audio-visual emotion recognition [16] showed that a bimodal

system yields higher accuracy than any unimodal system.

More recent research in audio-visual emotion recognition

has been conducted at either feature level [17] or decision

level [18]. Though there are plenty of research articles on

audio-visual emotion recognition, only a few research works

have been carried out on multimodal emotion recognition or

sentiment analysis using textual clues with visual and audio

modality. [5] and [19] fused information from audio, visual

and textual modalities to extract emotion and sentiment.

[20] and [21] fused audio and textual modality at feature

level for emotion recognition. [22] fused audio and textual

clues at decision level. Similar to [23], this paper targets

the classification of each sentence or utterance instead of the

entire review. However, in [23] the authors generate user-

defined feature-based summaries, which is not scalable in large

datasets. Instead, we consider a deep neural network, where

each layer automatically learns features in an unsupervised

manner. This is followed by fine-tuning using a subset of

known labels. In this way, the model is able to learn the

lexicon of each new dataset during training. The following is

a summary of the significance and contributions of this paper:

● The paper combines video, audio and text modality

in order to effectively detect sentiment in a subject-

independent manner. Our first contribution is that we

have used MKL to fuse the three modalities. While the

state of the art [24] uses a single kernel support vector

machine (SVM) classifier to fuse all three modalities, we

use multiple kernels to adapt to different modalities and,

hence, achieve higher accuracy.
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● Our second contribution is the novel integration of CNN

with a low dimensional RNN, which is computationally

much faster on large video data compared to baselines.

In particular, for better modeling overlaps among fea-

tures learned during temporal convolution, we consider

distributed time-delayed features in the video. This can

be achieved by initializing the weights of RNN with the

covariance matrix of output feature vectors learned by the

CNN.

III. DATASETS USED

In this section, we describe the datasets used in the multi-

modal sentiment analysis and multimodal emotion recognition

experiments. Our method can be easily used for the multi-class

problem of neutral, positive, and negative sentiments. In this

paper, we have followed previous authors on the benchmarks

and excluded neutral reviews so that a simple comparison is

possible. The method can also be used if one or two of the

different modalities namely video, audio and text are present.

A. Multimodal Sentiment Analysis Dataset

We validated our method on three benchmark multimodal

sentiment analysis datasets. The multimodal opinion utterances

dataset (MOUD) was used to train the multimodal sentiment

analysis module. The aim of the experiment was to predict the

target label of each utterance in a video as positive or negative,

where an utterance is a video segment of about 5 seconds.

For our experiment, we use the dataset developed by

Morency et al. [25]. They collected videos from popular social

media (e.g., YouTube) using several keywords (e.g., “favorite

products”) to produce search results consisting of videos of

either product reviews or recommendation.

On average, each video has 6 utterances and each utterance

is 5 seconds long. Each utterance in a video is annotated

separately as positive or negative. Hence, sentiment can change

during the course of a product review. The dataset contains 498

utterances labeled either positive, negative or neutral. In our

experiment, we do not consider neutral labels, that leads to

the final dataset consisting of 448 utterances.

Apart from the MOUD dataset, the trained model was

then validated on YouTube and ICT-MMMO dataset. The

former contains 110 negative and 87 positive videos of product

reviews, the latter contains 230 positive and 119 negative

videos. ICT-MMMO dataset, however, is not a utterance-level

dataset. Hence, we manually split the videos into utterances.

B. Multimodal Emotion Recognition Dataset

The USC IEMOCAP database [26] was collected for study-

ing multimodal expressive dyadic interactions. This dataset

contains 12 hours of video data split into 5 minutes of dyadic

interaction between professional male and female actors. Each

interaction session was split into spoken utterances and labeled

by at least 3 annotators into one emotion category, i.e., happy,

sad, angry, surprised, excited, frustration, disgust, fear and

other. The dataset contains 1,083 angry, 1,630 happy, 1,083

sad, and 1,683 neutral videos.

IV. PRELIMINARIES

A. Deep Convolutional Neural Networks

A deep neural network can be viewed as a composite of

simple, unsupervised models such as restricted Boltzmann

machines (RBMs) where each hidden layer serves as the

visible layer for the next RBM. RBM is a bipartite graph

comprising two layers of neurons (a visible and a hidden

layer), where the connections among neurons in the same

layer are not allowed. Such a model can be first trained in an

unsupervised manner, followed by fine-tuning using a subset

of the data with known labels.

To train such a multi-layer system, we must compute the

gradient of the total energy function E with respect to the

weights in all the layers. To learn such weights and maxi-

mize the global energy function, the approximate maximum

likelihood contrastive divergence approach can be used. This

method employs each training sample to initialize the visible

layer. Next, it uses the Gibbs sampling algorithm to update

the hidden layer and then reconstruct the visible layer con-

secutively, until convergence. As an example, here we use a

logistic regression model to learn the binary hidden neurons

and each visible unit is assumed to be a sample from a normal

distribution. The continuous state ĥj of the hidden neuron j,

with bias bj , is a weighted sum over all continuous visible

nodes v and is given by:

ĥj = bj +∑
i

viwij , (1)

where wij is the connection weight to hidden neuron j from

visible node vi. The binary state hj of the hidden neuron can

be defined by a sigmoid activation function:

hj = 1

1 + e−ĥj

, (2)

Similarly, in the next iteration, the continuous state of each

visible node vi is reconstructed. Here, we determine the state

of visible node i, with bias ci, as a random sample from the

normal distribution where the mean is a weighted sum over

all binary hidden neurons and is given by:

vi = ci +∑
j

hiwij , (3)

where wij is the connection weight to hidden neuron j from

visible node i. This continuous state is a random sample from

N(vi, σ), where σ is the variance of all visible nodes.

Unlike hidden neurons, visible nodes can take continuous

values in a Gaussian RBM. Lastly, the weights are updated as

the difference between the original and reconstructed visible

layer labeled as the vector vrecon using:

△wij = α(< vihj >data − < vihj >recon), (4)

where α is the learning rate and < vihj > is the expected

frequency with which visible unit i and hidden unit j are active

together when the visible vectors are sampled from the training

set and the hidden units are determined by (1).
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Finally, the energy of a deep neural network can be deter-

mined in the final layer using:

E = −∑
i,j

vihjwij , (5)

To extend the deep neural network to a convolutional deep

neural network, we simply partition the hidden layer into Z

groups [27] . Each of the Z groups is associated with a nx×ny

filter where nx is the height of the kernel and ny is the width of

the kernel. Let us assume that the input image has dimension

Lx × Ly. Then, the convolution will result in a hidden layer

of Z groups each of dimension (Lx − nx + 1)×(Ly − ny + 1).
These learned kernel weights are shared among all hidden

units in a particular group. The energy function of layer l is

now a sum over the energy of individual blocks given by:

E
l = −

Z

∑
z=1

(Lx−nx+1),(Ly−ny+1)

∑
i,j

(6)

nx,ny

∑
r,s

vi+r−1,j+s−1h
z
ijw

l
rs.

Hence, each layer of a deep CNN is referred to as a convolu-

tion RBM (CRBM). In such a model, the lower layers learn

abstract concepts and the higher layers learn complex features

for subjective sentences.

B. Recurrent Neural Networks

The standard RNN output, xl(t), at time step t for each

layer l is calculated using the following equations :

xl(t) = f(W l
R.xl(t − 1) +Wl.xl−1(t)) (7)

+WC∫
t

t−k
xl(t)dt

where WR is the interconnection matrix among hidden neurons

and Wl is the weight matrix of connections between hidden

neurons and the input nodes, xl−1(t) is the input vector at time

step t from layer l − 1, vectors xl(t) and xl(t − 1) represent

hidden neuron activation at time steps t and t−1, respectively,

and f is the non-linear activation function.

Furthermore, the distributed delays between output hidden

features in each layer can be modeled via WC. Unlike discrete

time delays that can be learned separately for each hidden

neuron, the distributed time delays are continuously changing

due to the combined effect of different outputs and, hence, we

use integration with respect to time to compute them.

In this paper, we propose to learn distributed time-delayed

dependence using CNNs. Hence, a kernel of dimension k × k

is able to capture distributed delays of up to k time points in

the video sequence and can be approximated by the covariance

matrix of features learned in the penultimate layer using (7). To

learn the weights WR of the RNN, back propagation through

time is used where the hidden layer is unfolded in time using

duplicate hidden neurons.

C. Multiple Kernel Learning

Consider a sequence of utterances s(1), s(2), . . . , s(T ). The

corresponding features for each utterance from audio, video

and text data are denoted by x(t)a, x(t)v and x(t)t. MKL uses

the corresponding target labels y(t) ∈ {+ve,−ve} to optimize

a dual form objective function with both min and max terms:

max
β

min
α

1

2

T

∑
i=1

T

∑
j=1

αiαjy(i)y(j)⎛⎝
M

∑
m=1

βa
mKa

m(x(i)a, x(j)a)

+
M

∑
m=1

βv
mKv

m(x(i)v, x(j)v) +
M

∑
m=1

βt
mKt

m(x(i)t, x(j)t)
⎞
⎠

−
T

∑
i=1

αi,

s.t
T

∑
i=1

αiy(i) = 0,
M

∑
m=1

βm = 1, 0 ≤ αi ≤ C∀i. (8)

where M is the total number of positive definite Gaus-

sian kernels Ka
m(x(i)a, x(j)a), Kv

m(x(i)v, x(j)v) and

Kt
m(x(i)t, x(j)t) in each modality with a set of different

parameters and αi, b and βm ≥ 0 are coefficients to be

learned simultaneously from the training data using quadratic

programming.

V. CRMKL MODEL

In order to integrate RNN with CNN and MKL and to

create the proposed CRMKL model, we extract features from

audio, video and text and combine them using MKL. In

particular, for video reviews we perform three steps: firstly,

in order to capture temporal dependencies, we transform

each pair of consecutive images at time t and t + 1 into a

single image; secondly, we include additional hidden layers of

recurrent neurons in the deep CNN model; lastly, we initialize

the distributed time-delay weight matrix of RNN with the

covariance of CNN output.

A. Extracting Features from Visual Data

Sentiment analysis of large scale visual content can help

to correctly extract sentiment of a topic. Deep CNNs have

good accuracy on topic classification of videos, however

they can get stuck in local minima on fine-grained problems

such as sentiment and emotion detection [28], [29]. They are

also extremely slow. Hence, we propose a layer of recurrent

neurons to optimize the learning of features from video data.

Video sentiment detection faces two main challenges: firstly,

it is an extremely computationally-expensive task; secondly,

training datasets are weakly labeled and, hence, the trained

model may not generalize well on new data. Since the video

data is very large, we only consider every 10
th frame in our

training videos. The constrained local model (CLM) is used

to find the outline of the face in each frame [30]. The cropped

frame size is further reduced by scaling down to a lower

resolution. In this way, we can drastically reduce the amount

of training video data.
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Fig. 2. Convolutional neural network for visual sentiment detection.

Figure 2 illustrates a convolutional RNN for visual senti-

ment detection. The input is a sequence of images in a video.

To capture the temporal dependence, we transform each pair

of consecutive images at t and t + 1 into a single image. We

use kernels of varying dimensions illustrated as Kernel 1, 2

and 3 to learn Layer 1 2D features from the transformed input.

Similarly, the second layer also uses kernels of varying

dimensions to learn 2D features. Up sampling layer will

transform features of different kernel sizes into uniform 2D

features. Next, a logistic layer of neurons is used to prepare

input for a RNN. Here, we have an inter-connected layer of

neurons that can model long time delays using delay states.

The final output layer classifies each video image as ‘Positive’

or ‘Negative’.

In order to generalize the model to other domains, we train it

using faces of different shapes and sizes. In order to validate

it in a speaker-independent manner, moreover, we train the

model on videos of product reviews in one domain and test

on videos from a completely different domain. Pre-processing

involved scaling all video frames to half the resolution. Each

pair of consecutive video frames were converted into a single

frame so as to achieve temporal convolution features. All the

frames were standardized to 250 × 500 pixels by padding with

zeros.

The first convolution layer contains 100 kernels of size

10×20, the next convolution layer had 100 kernels of size

20×30, this was followed by a logistic layer of 300 neurons

and a recurrent layer of 50 neurons. The convolution layers

were interleaved with pooling layers of dimension 2×2.

B. Extracting Features from Audio Data

We automatically extracted audio features from each anno-

tated segment of the videos. Audio features were also extracted

in 30Hz frame-rate and we used a sliding window of 100ms.

To compute the features, we used the open source software

openSMILE [31]. Specifically, this toolkit automatically ex-

tracts pitch and voice intensity. Z-standardization was used to

perform voice normalization. Basically, voice normalization

was performed and voice intensity was thresholded to identify

samples with and without voice. The features extracted by

openSMILE consist of several Low Level Descriptors (LLD)

and statistical functionals of them. Some of the functionals are

amplitude mean, arithmetic mean, root quadratic mean, stan-

dard deviation, flatness, skewness, kurtosis, quartiles, inter-

quartile ranges, linear regression slope, etc. So, counting all

functionals of each LLD, we obtained 6,373 features.

C. Extracting Features from Textual Data

We used a CNN as a trainable feature extractor to extract

features from the textual data. Each utterance in the original

dataset is in Spanish. While it is usually better to work directly

with the source language, in this work we translated each

utterance from Spanish to English using Google Translate.

Without the translation into English, 68.56% accuracy was

obtained on the MOUD dataset. The choice of CNN for feature

extraction is justified by the following considerations: the CNN

sentence model uses convolution as an operator to combine

semantically-related word vectors and the convolution layers

extract features in a hierarchical manner.

Each RBM layer is trained in an unsupervised manner and

then the complete deep model can be fine-tuned using a subset

of the dataset with known labels. The features learned in an

unsupervised manner in each layer may not be the best for

classification but can be used to train state-of-the-art classifiers

such as SVM or Naı̈ve Bayes.

Depending on the length of a sentence, the higher-order

features can be short and focused or long and global spanning

the entire sentence. CNNs form local features for each word

and combine them to produce a global feature vector for the

whole text using several hidden layers.
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In this way, we can model semantic relations between words

that may not be syntactically related in a parse tree. These

features that the CNN builds internally can be extracted and

used as input for another, more advanced classifier. In other

words, this turns CNN, originally a supervised classifier, into

a trainable feature extractor. To form the input for the CNN

feature extractor, for each word in the text we constructed a

306-dimensional vector by concatenating two parts:

● Word embeddings: We used a publicly available word2vec

dictionary [32], which has been trained on a 100-million

word corpus from Google News using the continuous

bag-of-words architecture. This dictionary provides a

300-dimensional vector for each word. For words not

found in this dictionary, we used random vectors.

● Part of speech: We used 6 basic parts of speech (noun,

verb, adjective, adverb, preposition, conjunction) encoded

as a 6-dimensional binary vector. We used Stanford

Tagger as a part of speech tagger [33].

If an instance s has n words then we represent the input vector

for that instance s1∶n = s1⊕ s2⊕ ...⊕ sn. Here, si ∈ Rk is a

k dimensional feature vector for word si (in this case k=306).

In our experiments, all texts were very short, consisting of one

sentence, the longest one being of 65 words. Thus, all input

vectors were of dimension 306 × (2 + 65 + 2) = 21,114. The

CNN we used consisted of 7 layers:

● Input layer of 21,114 neurons.

● Convolution layer with a kernel size of 3,4 and 50 feature

maps each. The output of the layer was computed with a

non-linear function; we used the ReLU.

● Max-pool layer with max-pool size of 2. Max pooling

operation over the feature map will take the maximum

value as the feature corresponding to a particular kernel

vector and, hence, discard highly similar features during

convolution.

● Convolution layer of kernel size of 2, 100 feature maps,

also using the ReLU.

● Max-pool layer with max-pool size of 2.

● Fully-connected layer of 500 neurons. The values of these

neurons were later used as the extracted features. For

regularization, we employ dropout on the penultimate

layer with a constraint on L2-norms of the weight vectors.

● Output softmax layer of 2 neurons. The final layer which

outputs two labels: positive or negative.

The features were extracted from the penultimate fully-

connected layer of the CNN. In this way, we used the last out-

put layer of the CNN only for training, but for actual decision-

making, we replaced it with more sophisticated classifiers such

as SVM or MKL.

On MOUD dataset, using only CNN as a classifier, 75.50%

was obtained which is in fact lower than the result (79.77%)

obtained when CNN was used to extract trainable features

for the SVM classifier (Table I). We also tried other word

vectors having different dimensions, e.g., Glove word vectors

and Collobart’s word vectors.

However, the best accuracy was obtained using Google

word2vec. We would like to clarify that we only translate

the text form of utterances into English. The audio and video

data is however in Spanish. The purpose of translation is to

leverage on the lexical resources in English and to interpret

the emotions in the video and audio with text.

D. Feature Selection and Fusion

We significantly reduced the number of features using

feature selection. We used two different feature selectors: one

based on the cyclic correlation-based feature subset selection

(CFS) and another based on principal component analysis

(PCA). The main idea of CFS is that useful feature sub-

sets should contain features that are highly correlated with

the target class while being uncorrelated with each other.

PCA is a slightly different method, that uses an orthogonal

transformation to convert the data into a set of variables that

are linearly uncorrelated called principal components. The

components can be ranked by their magnitude in the data. By

discarding smaller (less meaningful) components, PCA allows

for dimensionality reduction and analogical reasoning [34].

Here, we select top K features from each method, where K

was experimentally determined by trial. For example, in case

of audio, visual and textual fusion, K was set to 300.

Feature selection for multimodal sentiment and emotion

analysis is done using MOUD and IEMOCAP training dataset,

respectively. However, for each unimodal, each bimodal, and

the multimodal experiment, feature selection is done sepa-

rately. Feature-level fusion is achieved by concatenation of

the feature vectors obtained for each of the three modalities.

Clearly, the combined feature vectors from different modal-

ities are heterogeneous in nature. Hence, the resulting vectors,

along with the corresponding sentiment polarity labels from

the training set, were used to train a classifier with a MKL

algorithm; we used the SPF-GMKL implementation [35],

which is designed to deal with heterogeneous data.

The parameters of the classifier were found by cross-

validation. We chose a configuration with 8 kernels: 5 RBF

with gamma from 0.01 to 0.05 and 3 polynomial with powers

2, 3, 4. We also tried Simple-MKL; it gave slightly lower

results.

E. Computational Complexity

The computational complexity for a convolutional layer l is

given by O(nl−1.s
2
l .nl.m

2
l ), where nl−1 and nl are the number

of input and output feature maps, sl = nl−1
x × nl−1

y and ml =
nl
x × nl

y are the dimensions of the input and output feature

maps. The computational complexity of a layer of recurrent

hidden neurons is only O(R × n2), where R is the maximum

time delay considered and n is the number of neurons.

We can hence conclude that the computational complexity

of RNN is much lower than CNN for each iteration of training.

Therefore, in this paper we first train CNN for a limited

number of epochs and then the partially learned features are

further evolved using a low dimensional RNN for video data.
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TABLE I
ACCURACY OF STATE-OF-THE-ART METHOD COMPARED WITH OUR METHOD WITH FEATURE-LEVEL FUSION ON MOUD DATASET. THE NUMBER OF

FEATURES REFERS TO OUR EXPERIMENTS, NOT TO [24].

Text Visual Audio [24]

Our method

without feature
selection

with feature
selection

# features, without selection 500 50 6373 �

Unimodal

#
fe

at
u
re

s,
w

it
h

se
le

ct
io

n

437 – – 70.94% 79.14% 79.77%
– 50 – 67.31% 94.50% 94.50%
– – 325 64.85% 74.49% 74.22%

Bimodal
381 50 – 72.39% 95.75% 96.21%
384 – 81 72.88% 83.85% 84.12%
– 50 217 68.86% 95.38% 95.68%

Multimodal 50 89 64 74.09% 96.12% 96.55%

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We used a common framework for both sentiment and emo-

tion detection. For multimodal sentiment analysis, following

Perez et al., we have used the entire set of 448 utterances

in MOUD dataset and run ten-fold cross-validation using

CRMKL. In addition, to test the generalization ability of the

model on new datasets, we have also shown results on test

data from YouTube and ICT-MMMO. For comparison with

unimodal datasets such as only video or only text, we have

used SVM as a baseline classifier. For the case of emotion

recognition, that is a much more fine-grained problem than

sentiment detection, we evaluate our model via ten-fold cross-

validation on IEMOCAP dataset. Feature selection was not

done for visual modality as the deep CNN module in CRMKL

automatically learns the best features. Our experiments showed

that feature selection on visual data can lead to reduction in

accuracy.

Table I shows the 10-fold cross-validation results obtained

on MOUD dataset. The visual module of CRMKL, obtained

27% higher accuracy than the state of the art. When all modal-

ities were used, 96.55% accuracy was obtained outperforming

the state of the art by more than 20%. Next, to assess the

accuracy of the model on an unknown dataset, we trained

the model on MOUD dataset and tested on ICT-MMMO

and YouTube dataset. On both of these datasets, the model

performed notably well.

The visual classifier trained on the MOUD obtained 93.60%

accuracy. Other unimodal classifiers did not perform well like

the visual classifier in the cross-domain analysis. As ICT-

MMMO dataset is a video-level sentiment dataset, utterance-

level sentiment evaluation is not possible. Hence, after the

model generates sentiment labels of all utterances for a video,

we took the majority sentiment label of these utterances in

order to label the video by its sentiment.

We got 85.30% accuracy on the ICT-MMMO dataset using

the trained visual sentiment model on the MOUD dataset. The

obtained accuracy on the ICT-MMMO dataset was lower than

the other two datasets. This is because ICT-MMMO dataset

was manually segmented into utterances and, hence, it is likely

to have more noise compared to other datasets.

Not only the visual features, textual features are also novel

as they indeed boosted the accuracy of the experiments where

textual modality was involved. The unimodal experiment with

only textual features outperformed the performance of the state

of the art as shown in Table I. On all three datasets, the visual

and textual modalities when combine together produced better

accuracy than other bimodal experiments.

For multimodal emotion analysis, we used the same frame-

work as we employed for multimodal sentiment analysis. The

accuracy for all unimodal, bimodal and trimodal experiments

are significantly better than the state of the art. However,

the performance is not as good as the multimodal sentiment

analysis experiments. One of the possible reasons for this is

the use of same CNN configurations for both visual and textual

sentiment feature extraction.

This raises the question of using larger number of neurons

and layers in CRMKL for visual and textual emotion feature

extraction. This is of course a fundamental task of our future

work. The following observations were made from the multi-

modal emotion analysis experiments:

● We realized that the textual classifier recognized angry,

happy and neutral instances well. However, angry and

sad instances are very tough to distinguish from each

other using textual clues. One of the possible reasons is

that both classes are negative and many similar words are

used to express them.

● In the case of audio modality, we observed better accuracy

than textual modality for sad and neutral classes but not

for happy and angry classes. The classifier misclassified

many happy instances into angry. However, the classifier

performed very well to discriminate between sadness and

anger. We also observed that some happy instances were

classified as neutral.

● Visual modality produced the best accuracy compared to

the other two modalities. Though angry and sad faces

can be effectively classified, the classifier showed some

confusion between angry and sad faces. Neutral classes

were also separated more accurately in respect to other

classes though high confusion was observed between

happy and neutral faces.
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TABLE II
ACCURACY ON TEXTUAL (T), VISUAL (V), AUDIO (A) MODALITY AND COMPARISON WITH THE STATE OF THE ART.

Modalities
Emotion, on IEMOCAP

angry happy sad neutral

T
our results 60.01% 58.71% 57.15% 61.25%

state of the art 63.10%1 49.60%1 42.00%1 39.50%1

V
our results 69.50% 67.34% 67.41% 71.55%

state of the art 41.80%1 63.60%1 52.60%1 47.00%1

A
our results 59.83% 56.81% 60.75% 67.91%

state of the art 66.10%1 53.90%1 65.50%1 58.10%1

T + V
our results 74.81% 69.22% 74.85% 77.49%
state of the art – – – –

T + A
our results 62.50% 65.21% 63.30% 69.25%

state of the art 77.80%1 63.20%1 68.30%1 60.40%1

V + A
our results 71.86% 69.35% 74.23% 77.58%

state of the art – – – –

A + V + T
our results 79.20% 72.22% 75.63% 80.35%

state of the art 78.10%1 69.20%1 67.10%1 63.00%1

1by [36]

When we fused the modalities using feature-level fusion

strategy, higher accuracy was obtained as compared to uni-

modal classifiers, as expected. Although the identification

accuracy has been improved for every emotion, the confusion

between sad and angry face was still high.

The comparison with the state of the art (Table II) in

terms of accuracy shows that the proposed method performed

significantly better. For sad and neutral emotion the proposed

method outperformed the state of the art by a margin of 8%

and 17%, respectively. However, for angry and happy the

performance is just slightly better.

Paired t-test showed statistical significance of all experi-

ments with confidence level 95%. It can be found from the

Table II that visual and textual modalities performed notably

better than the state of the art. With the help of these two

modalities, the proposed method outperformed the state of the

art.

In this paper, we proposed the novel integration of CNN

with a low dimensional RNN that can converge to the global

maxima much faster than baselines. Hence, in Table II, for

the emotion sad, the performance of visual modality and the

bimodal combinations of visual modality with text and audio,

respectively, is over 70%.

This is due to the superior performance of the proposed

video classifier. In contrast, the bimodal combination of audio

and text has a 10% lower accuracy that is similar to the

baseline. The combined multimodal classifier of audio, video

and text is slightly better than visual modality. This is because

the video classifier dominates over the other two modalities.

Deep CNN have recently shown good performance on

audio, video and text classification. Instead of using a single

large hidden layer of neurons, deep models have several small

layers of hidden neurons. Since each layer is independent,

this results in tremendous reduction in complexity. Therefore,

in this paper we construct a deep CNN for each modality,

namely: audio, video, and text.

The groups of features learned by each of the three deep

CNN are combined using MKL. In this way, we can reduce

the number of input dimensions and group the features for

MKL.

A. Effect of Number of Hidden Layers

Deep learning is able to approximate very long time-delays

in video data via a hierarchy of hidden layers, where the

features learned in one layer become the input data to the next

layer. To determine the number of hidden layers of recurrent

neurons, we consider the root mean square error (MSE) on

training data. MSE is the cost function that the deep model is

trying to minimize while learning the weights. Hence, this is

a suitable metric for the improvement made by each hidden

layer in a deep model.

Figure 3 reports the decrease in MSE with increasing

number of hidden layers for the YouTube test dataset. It was

also observed that the variance over 10-fold cross-validation

reduces with increasing number of hidden layers. Hence, we

can conclude that deep learning is suitable for extracting

sentiments and emotions from video data. Since each layer

is learned independent of the previous layer, the number of

parameters is small and overfitting is avoided.

1 2 3 4 5
0.3

0.5

0.7

Number of Hidden Layers

M
S

E

Fig. 3. MSE with respect to number of hidden layers.
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B. Tuning of Hyper-parameters

As a performance measure, we adopted the F-score. Each

dataset is split into training set, validation set, and test set.

For all three modalities and for each hidden layer we consider

different number of hidden units (i.e., n=50/200/500/700)

and 5000 epochs of CNN training using the Theano based

stochastic gradient descent. The number of hidden neurons in

each layer is gradually increased until performance saturates

due to overfitting. In particular, early overfitting occurs for the

MOUD dataset.

Our best results are obtained with an ensemble of CNNs

by 10-fold cross-validation that differ in their random initial-

ization and mini-batches of 100 samples. Results on CNNs of

various depths and sizes shows that deep CNN outperforms

single-layer CNN with approximately the same number of

parameters, which quantitatively validates the benefits of deep

networks over shallow ones.

We see a consistent improvement as we use deeper mod-

els. Following previous authors, the word vector length was

empirically set to 300, and unknown words were randomly

initialized to vectors from Gaussian distributions. The 6 di-

mensional vector corresponds to 6 different parts of speech

such as noun and verb.

C. Visualization of Features

The deep temporal CNN model automatically learns fea-

tures from the training data, so that each neuron learns a

specific feature such as eyes or mouth. In the first layer, the

features learned are parts of the face and their sentiments,

and the higher layers will combine these emotional features to

learn the complete face and corresponding positive or negative

sentiment. We visualize the feature detectors in the first layer

of the network trained on the MOUD sentiment data.

We rank all image segments in the training data according to

the activation of each detector. Figure 4 shows the top image

segments activated at two feature detectors in the first layer

of a deep CNN. We find that similar features such as eyes or

mouth are expressed at the same hidden neuron. The feature

detectors learn to recognize not only the part of the face but

also the sentiment associated with it.

VII. CONCLUSION

Communication across the World Wide Web is rapidly

shifting from unimodal data, i.e., text, to multimodal data, i.e.,

video. Extracting emotions and polarity from videos is hence

becoming increasingly important for tasks such as social media

marketing, brand positioning, and financial prediction.

In this paper, we proposed the fusion of speech, voice tone,

and facial expressions for multimodal emotion recognition

and sentiment analysis. In particular, we described a novel

temporal deep convolutional neural network for visual and

textual feature extraction and used multiple kernel learning

to fuse heterogeneous features extracted from different

modalities, namely: audio, video, and text.

In the future, we will focus on improving the accuracy of

emotion detection via different neural network configurations.

We will also consider annotation of ICT-MMMO dataset at

utterance level for smoother training of the model.

Neuron with Highly Activated Features of Forehead and Mouth

Neuron with Highly Activated Features of Eyes and Ear

Fig. 4. Top image segments activated at two feature detectors in the first
layer of deep CNN
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