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A B S T R A C T

When available, multimodal data is key for enhanced emotion recognition in conversation. Text, audio, and
video in dialogues can facilitate and complement each other in analyzing speakers’ emotions. However, it is
very challenging to effectively fuse multimodal features to understand the detailed contextual information
in conversations. In this work, we focus on dynamic interactions during the information fusion process
and propose a Dynamic Interactive Multiview Memory Network (DIMMN) model to integrate interaction
information for recognizing emotions. Specifically, the information fusion within DIMMN is through multiple
perspectives (combining different modalities). We designed multiview layers in attention networks to enable
the model to mine the crossmodal dynamic dependencies between different groups in the process of dynamic
modal interaction. In order to learn the long-term dependency information, temporal convolutional networks
are introduced to synthesize contextual information of a single person. Then, the gated recurrent units and
memory networks are used to model the global session to detect contextual dependencies for multi-round,
multi-speaker interactive emotion information. Experimental results on IEMOCAP and MELD demonstrate that
DIMMN achieves better and comparable performance to the state-of-the-art methods, with an accuracy of
64.7% and 60.6%, respectively.
. Introduction

With the booming of multimodal social media apps such as Insta-
ram and TikTok, an increasing number of videos containing speakers’
motions are uploaded to the Internet daily. The analysis of such
nformation has significant practical value for marketers and the brands
hey serve [1]. For the emotion recognition task, the speaker’s emo-
ions are often presented with different media, such as text, voice,
estures, EEG signals, etc., which can express emotions to a certain
xtent. Text, audio, and video (image frame) are the most commonly
sed data which are the fundamental forms of human communication
2–4]. Therefore, multimodal conversational emotion recognition based
n videos has attracted increasing attention. There are many pub-
ic multimodal datasets [5–7] and competitions [8,9] that provide a
arge amount of data for emotion recognition in conversation (ERC).
his paper focuses on three ERC modalities: texts, audio, and videos.
uch progress has been made in multimodal fusion research. Previ-

us works used labor-intensive methods to extract features for each
odality [10] manually. With the development of deep learning, deep
eural network-based models have made significant progress in terms
f performance.
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1 Equal contribution.

For example, Kampman et al. [11] extracted features using convo-
lutional neural network (CNN) for different modalities and fused them
using a fully connected layer. Xu et al. [12] proposed bidirectional mul-
tilevel attention (BDLMA) model for image–text sentiment classification
using complementary information from image and text data. For the
ERC task, Poria et al. [13–16] used multilevel attention networks for
fusing short video clips and proposed a long short-term memory (LSTM)
model that was able to obtain contextual information from the corpus.
Adapted dynamic memory network (DMN) [17] directly performed
two-dimensional convolution of unimodal features to explore cross-
modal interactions. However, existing multimodal fusion methods in
ERC are conducted in a single view. Specifically, the model will give
more attention to a specific elementary modality. This approach is
efficient, but there is still a problem: one prominent modality will dom-
inate the semantic information. However, the expression of emotions in
ERC is mixed and diverse [18]. In addition, the emotional information
from different modalities may differ (such as in Fig. 1). Therefore, it
is essential to organically fuse multimodal information from multiple
perspectives by semantic information mining.
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Fig. 1. The picture compares emotion recognition results from single and multiple perspectives, respectively. They illustrate the necessity of multiview: integrating multiple views
introduces more interactive information than a single view. The emotions obtained under each view may differ, so choosing an appropriate view is beneficial to model analysis.
We introduce a multiview framework to enhance the interaction
during multimodal information fusion. Multimodal data are fused from
different perspectives (combinations of different modalities), which
not only solves the emotional inconsistency of the model from differ-
ent perspectives, as shown in Fig. 1 but also dramatically enhances
the robustness and accuracy of the algorithm in real scenarios. In
the multimodal interactive learning module, we use two independent
cross-modal multiview attention networks, which learn the emotional
features of the speakers in different modalities, from text–audio and
video–audio. Specifically, after each level of the attention network,
the two groups of learning modules produce self-attentive fusion fea-
tures and the attention-guided fusion feature. The features obtained
from the fusion of multiview attention networks retain adequate in-
formation of text, audio, and video modalities simultaneously. The
complementary information between the different modalities is also
extracted effectively. Finally, the features of the two sets of modal-
ities are concatenated as compact discourse representations of the
speaker. In the dialogue modeling module, we believe two factors
affect current emotions, different identity states (emotional contagion)
and emotional context (emotional inertia). Therefore, we propose an
ensemble of temporal convolutional network (TCN) and gated recurrent
unit (GRU). First, each speaker is modeled independently, and TCN
is used to obtain the self-emotional impact of a single person. Then,
the self-emotional impact from the other speakers is modeled with the
global GRU for synthesizing emotional feature fusion. Finally, with the
long-term memory capability of multi-hop memory networks, context-
specific information and utterance representations are combined, and
the resulting information is used to classify the emotional state of the
utterances.

In the theory of emotion generation and regulation [19], emotion
is the summation of psychological ingredients in various ways. It will
be dynamically affected by internal sensory and external situations.
It shows that emotion generation is an information processing pro-
cess involving information interactions and integration. The multiview
framework is mainly used to solve the problem of modalities infor-
mation interaction [20]. Therefore, for effectively mining the natural
emotional state, the attention block based on a multiview mechanism
is utilized to explore which modalities the interlocutor should use to
regulate emotions. It would assign more reasonable attention weight
to different modalities.
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The main contributions of this paper are as follows:
1. We propose a dynamic interactive multiview memory network

(DIMMN) to solve the information fusion problem in ERC tasks, espe-
cially for the inter-modal interactions during feature fusion. The multi-
view network fully uses the complementary information of all modal-
ities and dynamically balances the relationship between all modalities
during fusion.

2. We introduce TCN into the dialogue modeling module and build
a TCN-GRU-Memory network framework. TCNs and GRUs collect the
emotional impact of the speaker and other speakers, respectively, and
Memory networks select different global information according to the
query. The architecture can effectively fuse the information of multi-
person and multi-round conversations.

3. Experimental results show that our model outperformed the
existing mainstream methods on the IEMOCAP and MELD datasets.
Moreover, ablation studies and comparative experiments demonstrate
the effectiveness of our proposed two-stage module.

The remainder of this paper is organized as follows: Section 2 de-
scribes strengths and weaknesses of related work; Section 3 presents the
interactive learning module and dialogue modeling; Section 4 carries
out a series of experimental validation; finally, Section 5 provides
concluding remarks.

2. Related work

The recognition of emotions has attracted the attention of various
fields such as natural language processing, psychology, and cognitive
science [21]. Many works have concentrated on multimodal affective
computing and constructing an emotion recognition model.
Emotion recognition in conversation: Unlike single-sentence senti-
ment analysis, the emotion of the conversation is linked to the con-
textual information and speakers [22]. Considering this characteris-
tic, most researchers used deep networks with memory functions to
construct the solution model. Hazarika et al. used RNN-based deep
networks for multimodal ERC. Inspired by the memory network [23],
CMN [24] simulated the context information through a group of GRUs,
and obtained the appropriate information from the memory network to
recognize emotion. Similarly, ICON [25] further distinguished the role
of the speaker in the dialogue model.
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Fig. 2. (a) The framework of the attention-based interactive multiview memory network. (b) The attention block for updating the test utterance. (c) Multi-hop Write-Read scheme.
The last hop of the test corpus representation 𝑈 (𝑅+1)

𝑡 is used to predict emotion.
Majumder et al. [26] simulated speaker states, emotion states, and
global states in conversation, respectively. Zadeh et al. [15] proposed a
mixed long and short-term memory based on LSTM. DialogueGCN [27]
and ConGCN [28] applied graph neural networks (GCNs), which im-
proved the context understanding. Chaturvedi et al. [29] introduced
a joint model that combined CNN and fuzzy logic, which predicts the
degree of a specific emotion. Li et al. [30] designed a recurrent neural
network (RNN) containing different structures of generalized neural
tensor blocks for emotion classification.

Recently, some novel models incorporating knowledge graph [31]
and multitask learning have been proposed. COSMIC [32] obtained the
speaker’s internal and external states according to the causal knowledge
to analyze emotion. Stappen et al. [33] explored a lexical knowledge-
based extraction approach to obtain emotion understanding from video
transcriptions. Zhang et al. [34] utilized reinforcement learning and
domain knowledge to recognize emotion for multimodal conversational
videos. Liang et al. [35] built a graph convolution network based
on a dependency tree and affective commonsense to capture emo-
tional dependencies with specific aspects. Tu et al. [36] introduced
multitask graph neural network to explore subtle emotion changes.
Jiang et al. [37] proposed a multitask learning framework, which can
adaptively change the weight of loss per subtask. Li et al. [38] proposed
a multitask learning framework based on personality characteristics
and emotions. However, the above studies fuse multimodal data from a
single view, and most fusion methods aim for a particular perspective,
including text, audio, and video.
Multimodal fusions in affective computing: Integrating multimodal
data in ERC has become a hot topic in this research. Multimodal fusion
methods have gained tremendous progress in recent years. The existing
fusion methods are divided into three categories [3,39], which are early
fusion, late fusion, and hybrid fusion.

Early fusion [40] is also known as Feature-level fusion. It integrates
features immediately after they are extracted, preparing features by
computing point sums or dot products between corresponding position
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elements of a vector, or combining input-level features by concatenat-
ing input vectors. However, most of them depend on feature concate-
nation [41]. For example, Wollmer et al. [42] extracted features from
each of the three modalities and then fused them at the feature level;
CMF [24], ICON [25] directly concatenated multimodal features.

Late fusion (Decision-level fusion) [39,43] performs integration only
after each modality outputs results (e.g., outputs classification or re-
gression results). Late fusion first models each modality independently
and then integrates the results of multiple classifiers using a fusion
method such as the majority rule or weighted average. For example,
Kampman et al. [11] integrated the output of each modality to make
the final decision; Nojavanasghari et al. [44] trained different models
for each modality and then uses a decision voting framework to com-
bine all the models to make the final reasoning. However, late fusion
also fails to explore inter-modal dynamics because the features of the
various modalities cannot influence each other.

Hybrid fusion [45] is mainly performed in the middle layer of the
neural network. It uses a shared layer of the network to merge neural
units of multimodal data, and the intermediate layer shares parameters
to fuse different modal features. Zadeh et al. [46] proposed tensor
fusion networks to capture the dependency relationships within and
between three modality data. Hazarika et al. [47] proposed a new
framework, MISA, which projected each modality data into two differ-
ent subspaces for multimodal fusion. Akhtar et al. [48] used a multitask
learning approach for final sentiment and emotion classification with
audio, visual, and text features.

3. Methodology

Section 3 describes the proposed dynamic interactive multiview
memory network for multimodal ERC. The feature extraction processes
are described for text, audio, and video in the first part of this section.
Then, the model’s framework is described, consisting of two modules: a
multiview interactive learning module and an interactive conversation
analysis module. The algorithms of both modules will be presented.
Fig. 2 shows the overall architecture of the model.
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3.1. Pre-extracted features

In this paper, different modalities of the interlocutor are first ex-
tracted from the video. These extracted features are fed into the con-
versation analysis network through the multiview fusion module to de-
termine the conversation sentiment. We describe the feature extraction
methods as follows.

3.1.1. Text features
CNN [49] is an effective method for extracting textual features

from each discourse. The CNN method can learn the abstract semantic
representations based on the words and n-grams of a sentence [50].
Following Kim et al. [51], we utilize a CNN that has a single convolu-
tional layer consisting of three filters of sizes 𝑓 1

𝑡 , 𝑓𝑡2, and 𝑓𝑡3 (set them
to 3, 4, and 5, respectively), each with a feature mapping. We use these
filters for one-dimensional convolution and then perform maximum
pooling on their output, and the pooled features are finally activated
by rectified linear units (ReLU). The text extraction dimension is set to
100, representing the text corpus.

3.1.2. Audio features
Voice information plays a crucial role in adjusting the speakers’

emotional state. The open source software openSMILE [52] is used to
extract audio features. It provides High-dimension vectors for digital
audio features, which contain momentous statistical notions such as
formant, MFCC, MFSC, etc. In the same way, as Hazarika et al. [25],
we extracted 𝑑𝑎 audio features by openSMILE, and 𝑑𝑎 are set to 100
dimensions.

3.1.3. Visual features
This part is a multimodal feature fusion module for the three

unimodal feature representations after feature extraction. Unlike simple
attention networks, the multiview attention network iterates several
times interactively for each set of inputs. The result of each iteration
combines the attention weight vectors of the current set itself and
another set, which together lead the layer network to fuse a new feature
tensor. The interaction phase can retrieve information among differ-
ent modalities that were considered to be irrelevant. Each attention
network includes several levels. Inspired by [53], multiview attention
networks capture cross-modal interactions between two different sets
of modalities.

3.2. Multiview fusion module

This part is a multimodal feature fusion module that obtains three
unimodal feature representations after feature extraction, text, audio,
and video. Unlike simple attention networks, the multiview attention
network iterates several times interactively for each set of inputs. The
result of each iteration combines the attention weight vectors of the
current set itself and another set, which together lead the layer network
to fuse a new feature tensor. The interaction phase can retrieve infor-
mation between different modalities that were previously considered
irrelevant. Each attention network includes several levels. Inspired
by [53], multiview attention networks capture cross-modal interactions
between two different sets of modalities.

Before feeding the feature vectors of all three modalities into the
attention network, their dimensions should be unified. Let 𝐵𝑡−𝑎 =
[

𝐹𝑡, 𝐹𝑎
]

be the feature set after text–audio dimension unification, 𝐵𝑣−𝑎 =
[

𝐹𝑣, 𝐹𝑎
]

be the feature set after video–audio dimension unification,
where 𝐹𝑡 denotes text features, 𝐹𝑎 denotes audio features, 𝐹𝑣 denotes
video features; the following experiments 𝐵𝑡−𝑎 ∈ 𝑅𝑑𝑡−𝑎×2, 𝑑𝑡−𝑎=100 and
𝐵𝑣−𝑎 ∈ 𝑅𝑑𝑣−𝑎×2, 𝑑𝑣−𝑎=100, Fig. 3 shows the process of multiview fusion.
For the text–audio fusion module, the purpose is to extract the key
information of text and audio. To achieve that, video features guide
126

the fusion model to obtain the set of feature tensors.
The module calculates the attention weight vector 𝑎𝑡𝑡𝑡−𝑎 for the
ext–audio module by self-attention in the first-level network; In the
ultiview layer, the text–audio features will be weighted summed with
𝑡𝑡𝑡−𝑎 and 𝑎𝑡𝑡𝑣−𝑎 respectively to obtain the text–audio fusion tensor
epresentation 𝐹𝑡−𝑎 and the video-guided text–audio fusion tensor rep-
esentation 𝑓𝑡−𝑎. Then, the 𝐹𝑡−𝑎 and 𝑓𝑡−𝑎 will be concatenated together
nd sent to the next level with a repeated process.

The video–audio fusion module is similar to the text–audio fusion.
he module calculates the attention weight vector 𝑎𝑡𝑡𝑣−𝑎 and the fusion
ensor representation 𝐹𝑣−𝑎 of the video–audio module by self-attention
n the first level. Meanwhile, each level exchanges the attention cor-
elation coefficients with another set to obtain the text–audio guided
ensor representation 𝑓𝑣−𝑎. Concatenate fusion tensor representation
𝑣−𝑎 and text–audio guided tensor representation 𝑓𝑣−𝑎 and feed into
ext level. The outcome from the last level does not need to go through
he multiview layer again. The attention weight vectors and multimodal
eature vectors in each level are calculated as follows:

We uniformly used the Hadamard product to calculate the at-
entional correlation coefficients for multiple groups of modules be-
ause it preserves sufficient information about the interactions between
ifferent modalities.

Initial state (1st level):

𝑒𝑚𝑝1𝑡−𝑎 = 𝑡𝑎𝑛ℎ(𝑊𝑡−𝑎 ⋅ 𝐵𝑡−𝑎), (1)

𝑒𝑚𝑝1𝑣−𝑎 = 𝑡𝑎𝑛ℎ(𝑊𝑣−𝑎 ⋅ 𝐵𝑣−𝑎), (2)

𝑡𝑡1𝑡−𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑇
𝑡−𝑎 ⋅ 𝑡𝑒𝑚𝑝

1
𝑡−𝑎), (3)

𝑡𝑡1𝑣−𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑇
𝑣−𝑎 ⋅ 𝑡𝑒𝑚𝑝

1
𝑣−𝑎), (4)

here 𝑊𝑡−𝑎 ∈ 𝑅𝑑×𝑑 represents text–audio weigh matrix, 𝑤𝑡−𝑎 ∈ 𝑅𝑑×1 is
column vector in 𝑊𝑡−𝑎, 𝑊𝑣−𝑎 ∈ 𝑅𝑑×𝑑 represents video–audio weigh
atrix, 𝑤𝑣−𝑎 ∈ 𝑅𝑑×1 is a column vector in 𝑊𝑣−𝑎, 𝑎𝑡𝑡𝑡−𝑎 ∈ 𝑅1×2 is text–

audio attention weight vector, 𝑎𝑡𝑡𝑣−𝑎 ∈ 𝑅1×2 is video–audio attention
weight vector.

Next, the model will focus on 𝐵𝑡−𝑎 and 𝐵𝑣−𝑎 from two different
perspectives to obtain the representations 𝐹 (1) and 𝑓 (1) after the fusion
of the two modalities.

𝐹 (1)
𝑡−𝑎 = 𝐵𝑡−𝑎 ⋅ (𝑎𝑡𝑡1𝑡−𝑎)

𝑇 , (5)

𝐹 (1)
𝑣−𝑎 = 𝐵𝑣−𝑎 ⋅ (𝑎𝑡𝑡1𝑣−𝑎)

𝑇 , (6)

𝑓 (1)
𝑡−𝑎 = 𝐵𝑡−𝑎 ⋅ (𝑎𝑡𝑡1𝑣−𝑎)

𝑇 , (7)

𝑓 (1)
𝑣−𝑎 = 𝐵𝑣−𝑎 ⋅ (𝑎𝑡𝑡1𝑡−𝑎)

𝑇 , (8)

where 𝐹𝑡−𝑎 ∈ 𝑅𝑑×1 represents the result of focus on text and audio in the
round, 𝑓𝑡−𝑎 ∈ 𝑅𝑑×1 represents the result of focus on video and audio,
𝐹𝑣−𝑎 ∈ 𝑅𝑑×1 represents the result of focus on video and audio in the
round, 𝑓𝑣−𝑎 ∈ 𝑅𝑑×1 represents the result influenced by text and audio.

Starting from the 𝑖th level (𝑖>1), the 𝐹 (𝑖−1) and 𝑓 (𝑖−1) will guide
each other and calculate the new attention weight vectors to get new
characterization of the 𝑖th level.

From the 2nd level to the last level (𝑖th level, 𝑖 > 1):

𝑡𝑒𝑚𝑝𝑖𝑡−𝑎 = 𝑡𝑎𝑛ℎ(𝑊𝑡−𝑎 ⋅ [𝐹
(𝑖−1)
𝑡−𝑎 , 𝑓 (𝑖−1)

𝑡−𝑎 ]), (9)

𝑡𝑒𝑚𝑝𝑖𝑣−𝑎 = 𝑡𝑎𝑛ℎ(𝑊𝑣−𝑎 ⋅ [𝐹 (𝑖−1)
𝑣−𝑎 , 𝑓 (𝑖−1)

𝑣−𝑎 ]), (10)

𝑎𝑡𝑡𝑖𝑡−𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑇
𝑡−𝑎 ⋅ 𝑡𝑒𝑚𝑝

𝑖
𝑡−𝑎), (11)

𝑎𝑡𝑡𝑖𝑣−𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑇
𝑣−𝑎 ⋅ 𝑡𝑒𝑚𝑝

𝑖
𝑣−𝑎), (12)

where 𝑊𝑡−𝑎 ∈ 𝑅𝑑×𝑑 , 𝑊𝑣−𝑎 ∈ 𝑅𝑑×𝑑 , 𝑤𝑡−𝑎 ∈ 𝑅𝑑×1, 𝑤𝑣−𝑎 ∈ 𝑅𝑑×1,
𝑎𝑡𝑡𝑖𝑡−𝑎 ∈ 𝑅1×2, 𝑎𝑡𝑡𝑖𝑣−𝑎 ∈ 𝑅1×2.

The steps in multiview layer are described analogous as (5)∼(8).

𝐹 (𝑖)
𝑡−𝑎 = [𝐹 (𝑖−1)

𝑡−𝑎 , 𝑓 (𝑖−1)
𝑡−𝑎 ] ⋅ (𝑎𝑡𝑡𝑖𝑡−𝑎)

𝑇 , (13)

𝐹 (𝑖)
𝑣−𝑎 = [𝐹 (𝑖−1)

𝑣−𝑎 , 𝑓 (𝑖−1)
𝑣−𝑎 ] ⋅ (𝑎𝑡𝑡𝑖𝑣−𝑎)

𝑇 , (14)

𝑓 (𝑖)
𝑡−𝑎 = [𝐹 (𝑖−1)

𝑡−𝑎 , 𝑓 (𝑖−1)
𝑡−𝑎 ] ⋅ (𝑎𝑡𝑡𝑖𝑣−𝑎)

𝑇 , (15)

𝑓 (𝑖) = [𝐹 (𝑖−1), 𝑓 (𝑖−1)] ⋅ (𝑎𝑡𝑡𝑖 )𝑇 . (16)
𝑣−𝑎 𝑣−𝑎 𝑣−𝑎 𝑡−𝑎
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Fig. 3. The interactive learning process of the multiview attention network. It is divided into two parts: text–audio attention fusion networks and video–audio attention fusion
networks, in which the two parts obtain video-guided text–audio features and text-guided video–audio features in the multiview layer, respectively, to achieve the purpose of
interaction between different modalities.
The output of the last level 𝐹 (𝑅)
𝑡−𝑎 ∈ 𝑅𝑑×1 and 𝐹 (𝑅)

𝑣−𝑎 ∈ 𝑅𝑑×1 are
the text–audio fusion result and video–audio fusion result, respec-
tively. To summarize, in each multimodal fusion level, the attention
weights of text–audio and video–audio are considered simultaneously.
Namely, the multimodal features are fused from two different perspec-
tives. The representations from the two perspectives are concatenated
before the next round of fusion. The features learned in this way retain
more critical information for the ERC task. Finally, we concatenate the
outputs of the multiview attention blocks to obtain 𝑈 .

𝑈𝑋= 𝑡𝑎𝑛ℎ((𝑊 𝑓 [𝐹 (𝑅)
𝑡−𝑎 ;𝐹

(𝑅)
𝑣−𝑎])+𝑏

𝑓 ), (17)

𝑋 ∈
{

SA,SB,⋯SX
}

, where 𝑈𝑋 is the output corpus representation with
multimodal information.

3.3. Interactive conversation module

After the fusion of internal features of a single person, we obtained a
corpus representation 𝑈𝑋

𝑖 = {𝑢1, 𝑢2,… , 𝑢𝑁}, 𝑋 ∈
{

SA,SB,… ,SX
}

with
multimodal information, where 𝑁 is the number of test corpus state-
ment. According to the DialogueRNN [26], two major impacts in the
process of fusing external sentiment information of different speakers
should be considered: the historical sentiment state of each speaker
and the sentiment dependency relationship of the global discourse.
To address these two assumptions, an independent TCN is constructed
around each interlocutor to capture the single-player sentiment state. A
set of GRUs is constructed around the global conversational sentiment
information to capture the sentiment dependencies generated from
different interlocutors through communication. After learning from
these two sets of networks, the model fuses the emotional features of
all speakers. Finally, a multi-hop memory network is constructed as
an information base to save the sentiment state of each sentence. It
is combined with specific sentences for emotion classification.
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3.3.1. Independent TCN
In ERC problems, many models and methods are modeled using

LSTM or GRU since RNNs can fully exploit the information’s temporal
and semantic information when dealing with time-series problems.
However, recent works in different scenarios of time-series problems
show that specific CNN structures can achieve even better results [54–
59]. This paper selects TCN as a model for building individual speaker
history sentiments. It is found to capture more effectively [60] after
multiview feature fusion. The TCN applies a residual network and
inflated convolution, which has a broader and more flexible recep-
tive field than GRU. It means that a relatively long valid history of
information can be captured (the network can further observe and
predict). In the independent TCN calculation module, for each sentence
of information, the input value 𝑢𝑖 = 𝑈𝑖, TCN calculates the single
person’s emotional state information 𝑝𝑖 = 𝑇𝐶𝑁(𝑢𝑖), 𝑖 ∈ 𝑘, 𝑘 for each
time step (the length of a sentence as a time step) denoting the size of
the time window for the whole segment.

3.3.2. Global contextual GRU
Theories from cognitive science also suggest that emotional influ-

ences persist between people [61,62]. During the conversation, changes
in the emotions of different speakers are transmitted to each other
through their corresponding gestures, postures, and intonations. All
these changes occur dynamically within the course of the conversa-
tion. While modeling the different speakers individually, this module
incorporates the historical information of each speaker into the global
impact to maintain a global representation of the entire context. It
updates the context information iteratively at each time step in a global
conversation. For an arbitrary 𝑘 ∈ [1, 𝐾], the global emotion state of the
conversation is updated by taking information about the previous state
𝑠𝑘−1 and the current speaker’s affective state 𝑝(𝑥)𝑘 , 𝑥 ∈

{

SA,SB,… ,SX
}

,
which is the conversation information obtained by 𝑢(𝑥)𝑘 through the 𝑘th
time step of the independent TCN computation.
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This module consists of a GRU network with the following state
calculation for each time step. GRU was proposed by Cho et al. [63]
to capture dependencies with large time step distances in a time series.
In the 𝑘th time step, its hidden state 𝑠𝑘 ∈ 𝑅𝑑𝑒𝑚 is computed from 𝑟𝑘

(reset gate), 𝑢𝑝𝑘 (update gate), the current input 𝑝𝑘 and the previous
moment state 𝑠𝑘−1 as follows:

𝑢𝑝𝑘 = 𝜎(𝑉𝑢𝑝𝑥𝑘 +𝑊𝑢𝑝𝑠
𝑗−1 + 𝑏𝑢𝑝), (18)

𝑟𝑘 = 𝜎(𝑉𝑟𝑥𝑘 +𝑊𝑟𝑠
𝑗−1 + 𝑏𝑟), (19)

𝑣𝑘 = 𝑡𝑎𝑛ℎ(𝑉ℎ𝑥𝑘 +𝑊ℎ(𝑠𝑘−1 ⊗ 𝑟𝑗 ) + 𝑏ℎ), (20)

𝑠𝑘 = (1 − 𝑢𝑝𝑘)⊗ 𝑣𝑘 + 𝑢𝑝𝑘 ⊗ 𝑠𝑘−1. (21)

In this work, the global GRU with input 𝑥𝑘 = 𝑝𝑘𝑋 , 𝑋 ∈
{𝑆𝐴, 𝑆𝐵 ,… , 𝑆𝑋}

If 𝑋 = SA

𝑠𝑘 = 𝐺𝑅𝑈𝑔(𝑠𝑘−1, 𝑝𝑘𝐴). (22)

Else if 𝑋 = SB

𝑠𝑘 = 𝐺𝑅𝑈𝑔(𝑠𝑘−1, 𝑝𝑘𝐵). (23)

3.3.3. Conversation memory network
After the overall operation of the global context module, the 𝐺𝑅𝑈𝑔

network produces a series of memories 𝑀 =
[

𝑠1,… , 𝑠𝑘
]

∈ 𝑅𝑑𝑒𝑚×𝑘, 𝑑𝑒𝑚
as the embedding dimension of each sentence after modal fusion. These
memories M contain dynamic influences from each time window in
history (𝐾 in total). They act as a repository of contextual memories
from which person-specific data can be selectively fitted into the testing
corpus for obtaining distinguishable features. To this end, a set of 𝐺𝑅𝑈𝑔

networks are used to perform each hop of the read or write cycle task
separately, where the test utterance 𝑢𝑡 is combined with soft attention
during the read or write to refine it into a context-aware representation.

This module contains the information of all conversations, so it is
insufficient to use RNN-based networks because their memory ability is
so finite that they cannot store the global memory. TCNs can retain the
whole historical information, but their space overhead is so large that
we can hardly do it under limited conditions. Memory networks can
solve both problems. The need for ‘‘multi-hop’’ is inspired by the related
work on memory networks [41,43,64], which shows the importance of
multiple read or write iterations for performing transitive reasoning.
There is a risk of missing the underlying memory with just one cycle;
however, multiple iterations will help improve the attention head’s
concentration. Fig. 2(b) and (c) show the attention block and multi-hop
read/write process. At the 𝑟th hop, the following results are calculated.
Read Memory Unit: We read memories from the memory unit 𝑀 (𝑟) in
the 𝑟th iteration utilizing an attention mechanism. Firstly, each memory
𝑚𝑟
𝑘 ∈ 𝑀 (𝑟) applies matmul product computation with the test utterance

𝑢(𝑟)𝑡 (𝑀 (1) = 𝑀 at the first iteration).
The results were normalized to produce an attention-based weight

vector 𝑎𝑡𝑡(𝑟) ∈ R𝐾 , which 𝑘th normalized score manifests the correlation
f the 𝑘th unit to the test corpus. The attention vector 𝑎𝑡𝑡(𝑟) was
omputed as follows:

𝑡𝑡(𝑟) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝑀 (𝑟))𝑇 ⋅ 𝑢(𝑟)𝑡 ). (24)

The attention weight vector 𝑎𝑡𝑡(𝑟) is weight-summed with each
sentence and used to find a new weighted memory representation:

𝑚(𝑟) =
𝐾
∑

𝑘=1
𝑎𝑡𝑡

(𝑟)

𝑘 ⋅ 𝑚(𝑟)
𝑘 = 𝑀 (𝑟) ⋅ 𝑎𝑡𝑡(𝑟), (25)

𝑚(𝑟) as a weighted memory, which is both a summary of contextual
emotion and information based on the test corpus. Finally, the weighted
memory 𝑚(𝑟) is used to update test utterance 𝑢(𝑟)𝑡 as follows:

(𝑟+1) (𝑟) (𝑟)
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𝑡 = 𝑡𝑎𝑛ℎ(𝑚 + 𝑢𝑡 ). (26)
Table 1
The split of datasets.

Dataset Dialogues Utterances

Train Val Test Train Val Test

IEMOCAP 120 31 5810 1623

MELD 1039 114 280 9989 1109 2610

Write Memory Unit: After each hop of the read operation, the memory
will be updated in the next hop. We use several GRU units as a network,
called 𝐺𝑅𝑈𝑚, that takes as input the memory unit 𝑀 (𝑟) of the 𝑟th
iteration and reprocesses this sequence through the GRU network to
generate a new memory 𝑀 (𝑟+1) for the (𝑟 + 1)th hop, i.e., 𝑀 (𝑟+1) =
𝐺𝑅𝑈𝑚(𝑀 (𝑟)). During the whole hops, writing memory can be regarded
as a stacked RNN in which each hop improves the representation of the
RNN output. The 𝐺𝑅𝑈𝑚s’ parameters are shared.
Predication: For the final classification result, the dimension of vector
𝑜 is the number of emotion classes 𝐶, namely 𝑜 ∈ 𝑅𝐶 . Cross-entropy is
used as a loss function for training.

𝑜 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 𝑜𝑢(𝑅+1)𝑡 + 𝑏). (27)

For the final classification result, the dimension of vector 𝑜 is the
amounts of emotion classes 𝐶, namely 𝑜 ∈ 𝑅𝐶 . Cross-entropy is a loss
function to reflect the cost metric of training.

4. Experiment

In this section, our work conducts comprehensive experiments to
present the experimental results on different network structures com-
pared with various baselines. We also provide necessary analyses and
discussions for further argumentation to validate our proposed model.

4.1. Datasets detail

IEMOCAP: IEMOCAP [5] is the most widely used multimodal dataset in
ERC that contains ten two-person dialogues between speakers, includ-
ing video, speech, facial motion capture, and text transcription. The
IEMOCAP database is divided into five parts, each pair being assigned
to a different conversation scene. The dataset considers six emotional
types for the classification task: anger, happiness, sadness, neutrality,
excitement, and frustration. We extract the three modalities and assign
the dialogue ID to ensure they are aligned. After pre-extraction, we
use 80% of the utterances in the training and verification set and the
remaining 20% in the test set. The multimodal dialogue split scheme is
similar to Hazarika et al. [25] and Majumder et al. [26].2
MELD: MELD [6] is created by enhancing and extending the sentiment
line dataset. It consists of 1433 dialogues selected from the American
drama ‘‘Old Friends’’ with 13,708 sentences, including video, text,
speech, and other data content. MELD labels each discourse in the
dialogues with seven emotions: anger, disgust, sadness, happiness,
neutrality, surprise, and fear. Table 1 shows our division of the dataset.

4.2. Baselines

DIMMN is compared with various state-of-the-art corpus-level emo-
tion classification models for multimodal.

c-LSTM [14] A hierarchical structure is designed to classify the corpus
using the neighboring corpus (of the same speaker) as the context.

CMN [24] The model uses GRU in ERC to extract each speaker’s
conversation information separately, then feeds their history into the
memory network and makes the final prediction.

2 https://github.com/declare-lab/conv-emotion

https://github.com/declare-lab/conv-emotion
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Table 2
Different models on the IEMOCAP dataset.

Models Happy Sad Neutral Angry Excited Frustrated Avg

𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1

c-LSTM 25.7 35.6 58.6 69.3 56.2 53.5 70.0 66.3 58.8 61.1 67.4 62.4 57.6 59.0
CMN 25.0 30.4 55.9 62.4 53.2 56.2 67.6 64.6 69.9 67.9 71.7 63.1 59.9 59.4
MFN 24.0 34.1 65.6 70.2 55.5 52.1 72.3 66.8 64.3 62.1 67.9 62.5 60.1 59.9
ICON 23.6 32.8 70.6 74.4 59.9 60.6 68.2 68.2 72.2 68.4 71.9 66.2 62.8 62.9
Dialogue-RNN 25.7 33.2 75.1 78.8 58.6 59.2 64.7 65.3 80.3 71.9 61.2 58.9 63.4 62.8
QMNN 41.3 39.7 72.9 68.3 54.1 55.3 65.4 62.6 66.0 66.7 55.6 62.2 60.8 59.9
FERNet 38.9 40.1 72.7 70.2 67.2 61.5 66.5 62.4 68.9 68.2 50.4 58.6 61.8 61.6
TL-ERC – – – – – – – – – – – – – 58.5

Our Modelremove multiview 22.9 30.8 69.8 72.3 60.9 59.5 65.3 60.9 67.9 66.7 70.9 64.4 63.1 62.2
Our Modelremove TCN 25.0 29.3 62.9 72.8 55.5 57.9 62.9 62.8 77.6 70.3 76.1 65.3 63.6 63.0
Our Model 24.3 30.2 64.5 74.2 57.3 59.0 61.8 62.7 81.3 72.5 75.9 66.6 64.7 64.1
Table 3
Different models on the MELD dataset.

Models Anger Disgust Fear Joy Neutral Sadness Surprise Avg

𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1

test-CNN 34.5 - 8.2 - 3.7 - 49.4 - 74.9 - 21.0 - 45.5 - 55.0 -
c-LSTM 43.4 46.0 23.7 28.6 9.4 5.4 54.5 58.7 76.7 73.8 24.3 33.0 51.0 46.7 57.6 55.9
Dialogue-RNN 43.7 41.5 7.9 1.7 11.7 7.2 54.4 50.7 77.4 73.5 34.6 23.8 52.5 49.4 60.3 57.4
QMNN - - - - - - - - - - - - - - 60.8 58.0
NTN - - - - - - - - - - - - - - 60.2 -

Our Model 53.0 47.6 7.6 6.7 9.7 8.8 53.2 52.3 82.3 76.0 3.8 4.6 47.3 46.9 60.6 58.6
,
a
a

MFN [65] A multimodal fusion method based on the outer tensor
product (Outer product) is proposed to explore the unimodal and
multimodal interactions in network models using multiview learning.

ICON [25] The model adds a GRU network to the CMN to establish a
global dialogue and realize the interaction of the two-person dialogue
process.

DialogueRNN [26] The influence of the different roles (speaker and
listener) in the conversation on the sentiment is proposed. The model
consists of two sets of GRUs for tracking the speaker’s state and the
context during the conversation.

QMNN [66] Multimodal fusion and dialogue modeling is achieved
through a quantum-inspired neural network, which is a new perspective
in the ERC.

FERNet [67] It is a fine-grained extraction and reasoning network
based on two components for generating target-specific historical dis-
course expressions.

TL-ERC [68] Transfer learning was introduced into ERC. The param-
eters of the pre-trained model are transferred to another emotion
model.

NTN [69] A neural tensor network consisting of bilinear, linear, and
bias terms is used for ERC. In addition, they propose a factorization
method that makes the neural tensor network more efficient.

4.3 Results and discussion

To validate the effectiveness of our proposed approach, we first
ompared our model with the advanced multimodal-based modeling
pproach described above on the IEMOCAP dataset. Python 3.6, Ten-
orFlow 1.13, and Keras libraries are used on an NVIDIA RTX 3060
PU for our experiments. The running period of each epoch in this
nvironment is about 30 s, which is relatively efficient. The final ex-
erimental results are presented in Table 2. Two metrics, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒− 𝑎𝑐𝑐
nd 𝐹1 score, are used as the basis for evaluation. Our model achieves
n average accuracy of 64.7%, and the results are the best here. It is
mportant to note that 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑎𝑐𝑐 here refers to a weighted average
ather than simply averaging over the categories.
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Contrasted with the advanced architecture like DialogueRNN, QMNN
nd FERNet, our model achieves a 1.3% advance in weighted average
ccuracy and 1.2% improvement in the 𝐹1 score, respectively. For all

14 evaluation metrics of the IEMOCAP dataset, our model outperforms
other methods in 5 metrics and achieves competitive performance
in the remaining metrics. Ablation experiments are also included to
validate the effectiveness of multiview fusion and TCN. We control
variables for the modal fusion part and TCN, respectively. The experi-
mental results show that multiview fusion makes more effective use of
multimodal information, which guides features of different modalities
to make correct judgments according to their ‘‘strengths’’. Meanwhile,
using TCNs instead of GRUs to model contextual information of a single
speaker has some improvement in the results. Dilatation convolution
plays an important role in them. Here we are using exponential dilation
convolution. The dilation factor is related to the number of layers and
is set to 2𝑖. We artificially ‘‘force’’ the network to use only the historical
step information within the range of dilation factor. However, the RNN
network can only input all the historical information by default and
cannot achieve fine control of the input information. It is the main
reason to improve the result in our opinion. In general, DIMMN can
effectively capture cross-modal information from multimodal informa-
tion with cross-modal interactions and have a strong ability to capture
contextual sentiment, both of which would improve the performance
of the ERC task. Fig. 4, and Fig. 5 show the confusion matrix under the
IEMOCAP dataset.

Next, our model is evaluated on the MELD dataset in the same
environment, the largest multiparty and multimodal ERC dataset. We
used the textual audio modal per the MELD setup to compare our
model with state-of-the-art methods in a multimodal setting. Unlike
IEMOCAP, two sets of textual and audio attentive modules are utilized
respectively in the multiview interactive learning phase due to the lack
of video modal. The experimental results are summarized in Table 3. It
can be seen that our model performs best in the 𝐹1 score. Figs. 6 and
7 show the confusion matrix for the MELD dataset.

During the experiment, we explored the effects of different modal
groupings of interactive multiview memory networks on the experimen-
tal results. We set up four groups of fusion schemes to be compared
on the IEMOCAP dataset: text, audio, and video connection; text–
audio and video–audio interactive learning; text–video and audio–
video interactive learning; and video–text and audio–text interactive
learning.
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Table 4
Controlled experiment of different H on IEMOCAP.

Models Happy Sad Neutral Angry Excited Frustrated Avg

𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1

H=2 23.6 32.2 64.5 63.8 58.6 59.3 61.6 62.2 76.2 70.7 75.2 58.3 63.2 62.7
H=3 24.3 30.2 64.5 74.2 57.3 59.0 61.8 62.7 81.3 72.5 75.9 66.6 64.7 64.1
H=4 25.0 31.9 64.9 74.0 57.3 59.0 61.8 62.7 77.9 71.9 75.9 66.6 64.2 63.7
H=5 23.8 30.9 64.2 74.0 57.1 58.7 64.7 65.9 76.0 70.6 75.6 60.0 63.8 62.7
Table 5
Controlled experiment of different K on IEMOCAP.

Models Happy Sad Neutral Angry Excited Frustrated Avg

𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1

K=3 24.0 30.0 63.8 73.2 56.7 58.0 60.0 60.9 76.9 69.8 74.5 65.8 63.5 62.8
K=4 24.1 30.1 64.6 74.1 57.1 58.8 61.3 62.0 79.6 71.0 75.1 66.4 64.3 64.0
K=6 24.3 30.2 64.5 74.2 57.3 59.0 61.8 62.7 81.3 72.5 75.9 66.6 64.7 64.1
K=8 24.3 30.2 64.5 73.8 57.3 58.7 61.8 62.4 80.3 71.6 75.9 66.8 64.6 64.1
Table 6
Controlled experiment of different L on IEMOCAP.

Models Happy Sad Neutral Angry Excited Frustrated Avg

𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1 𝑎𝑐𝑐 𝑤 − 𝐹1

L=5 22.2 27.3 60.6 69.2 56.8 52.1 58.8 60.7 78.6 70.8 74.8 64.6 63.7 62.8
L=6 24.3 30.2 64.5 74.2 57.3 59.0 61.8 62.7 81.3 72.5 75.9 66.6 64.7 64.1
L=7 24.3 30.0 63.7 71.6 56.8 54.2 62.4 63.5 79.9 71.7 74.8 65.2 64.5 63.9
L=8 23.6 28.8 64.1 74.0 56.8 53.6 61.2 61.3 77.9 70.9 75.3 66.0 64.4 63.6
Fig. 4. Confusion matrix under recall metrics of IEMOCAP dataset.

Fig. 5. Confusion matrix under precision metrics of IEMOCAP dataset.

It can be found from the experiments that the text–audio and video–
audio have the best results. This result indicates that the dialogue
information is practical after the multiview memory network. Both
video–text and audio–text views retain too much text information while
ignoring the information from other modalities.
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Fig. 6. Confusion matrix under recall metrics of MELD dataset.

Fig. 7. Confusion matrix under precision metrics of MELD dataset.

The resulting features are not conducive to the next stage of sen-
timent analysis. Table 7 shows the experimental results of different
fusion approaches. We explored the effects of the level numbers 𝐻
and the convolutional kernel size 𝐾 and layer numbers 𝐿 of the
TCN in DIMMN on the experimental results. Orthogonal and control
experiments are designed to select the optimal parameters, respectively.
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Fig. 8. Parameter analysis results of DIMMN.
Table 7
Different modal combinations on IEMOCAP.

Modal 𝑎𝑐𝑐 𝑤 − 𝐹1

A+V+T 62.8 62.1
TV+AV 61.9 60.9
TA+VA 64.7 64.1
VT+AT 61.0 59.5

Table 8
Orthogonal tests on the IEMOCAP dataset.

IDs H K L Result(𝑎𝑐𝑐)

1 2 3 5 62.8
2 2 4 6 63.1
3 2 6 7 63.2
4 2 8 8 63.1
5 3 3 6 63.5
6 3 4 5 63.8
7 3 6 8 64.5
8 3 8 7 64.2
9 4 3 7 63.6
10 4 4 8 63.8
11 4 6 5 64.0
12 4 8 6 63.9
13 5 3 8 63.2
14 5 4 7 63.5
15 5 6 6 63.8
16 5 8 5 63.7

The orthogonal test is an efficient experimental method [70]. It
simultaneously considers three factors, 𝐻 , 𝐾, and 𝐿, and some repre-
sentative combinations are selected for the test based on orthogonality.
These representative combinations conform to a uniform distribution,
and 𝐿(16)(34) is set to represent the orthogonal test 16 times. The
orthogonal experiment showed us the highest results of 64.5% for
𝐻=3, 𝐾=6, and 𝐿=8. After the orthogonal experiments, the number
of attention network cycles is set as 𝐻 , the convolutional kernel size as
𝐾, and the number of layers as 𝐿 of TCN. We focus on the respective
effects with 𝐻=3, 𝐾=6, and 𝐿=8 as the control variables. The final
experimental results from Tables 2 and 3 show that our model achieves
the best performance when 𝐻=3, 𝐾=6, and 𝐿=6. The performance of
our proposed method becomes better as the number of cycles increases.
It means that multiple shifted attention interactions can effectively
capture more cross-modal interactions, and the TCN can adequately
capture single-person emotions from the features. The classification
performance becomes worse when 𝐻 is greater than three due to the
redundant information introduced in the feature fusion process. As the
kernel_size and depth of the TCN network increase (until 𝐾=6, 𝐿=6),
the classification results also improve significantly. It indicates that
increasing the receptive field is more effective in extracting sentiment
information from the features after modal fusion, but increasing the
number of network layers and the size of kernel_size will lead to
overfitting.
131
The number of model parameters and the computational time com-
plexity also increases. Finally, 𝐻 , 𝐾, and 𝐿 are set to 3, 6, and 6,
respectively, to obtain the best performance. Fig. 8 and Table 8 show
the results of the orthogonal tests, Table 4, Table 5, and Table 6
show the results of the control experiments with different parameters,
respectively.

5 Conclusion

This paper introduced a dynamic interactive multiview memory
network for emotion recognition in multimodal conversations, which
utilizes a multigroup attention network to learn features interactively
across modalities. Our model captures cross-modal interactions from
multimodal information and fuses the global information of multiple
interlocutors through an ensemble of temporal convolutional networks
and gated recurrent units. Both modules significantly improve the
accuracy of multimodal dialogue sentiment analysis by obtaining more
discriminative discourse features. Empirical evaluation of the public
multimodal dialogue dataset shows that our approach achieves com-
parable performance with the state-of-the-art methods. As future work,
we plan to introduce more modalities in interactive multiview learning
and refine the images of different scenes, in order to further improve
emotion recognition in multimodal conversations.
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