
1556-603X/19©2019IEEE AUGUST 2019 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    39

Sandro Cavallari
School of Computer Science and Engineering,  
Nanyang Technological  University, SINGAPORE

Erik Cambria
School of Computer Science and Engineering,  
Nanyang Technological  University, SINGAPORE

Hongyun Cai
Advanced Digital Sciences Center, SINGAPORE

Kevin Chen-Chuan Chang
Department of Computer Science, University of  
Illinois at Urbana- Champaign, USA

Vincent W. Zheng
Advanced Digital Sciences Center, SINGAPORE

Embedding Both Finite and Infinite Communities on Graphs

Abstract

In this paper, we introduce a new set-
ting for graph embedding, which 
considers embedding communities 

instead of individual nodes. We find that 
community embedding is not only useful 
for community-level applications such as 
graph visualization but also provide an 
exciting opportunity to improve com-
munity detection and node classification. 
Specifically, we consider the interaction 
between community embedding and 
detection as a closed loop, through node 
embedding. On the one hand, node 
embedding can improve community 
detection since the detected communities 

are used to fit a community embedding. 
On the other hand, community embed-
ding can be used to optimize node 
embedding by introducing a communi-
ty-aware high-order proximity. However, 
in practice, the number of communities 
can be unknown beforehand; thus we 
extend our previous Community 
Embedding (ComE) model. We propose 
ComE+, a new model which handles 
both: the unknown truth community 
assignments and the unknown number of 
communities present in the dataset. We 
further develop an efficient inference 
algorithm for ComE+ for keeping com-
plexity low. Our extensive evaluation 

shows that ComE+ improves the state-
of-the-art baselines in various application 
tasks, e.g., community detection and 
node classification.

I. Introduction
Graphs are a representational framework 
for many real-world applications, e.g., 
social media analytics, user’s interest dif-
fusion, knowledge representation and 
extraction, protein interaction, and oth-
ers. Analyzing such graphs is a key factor 
to take strategic decisions. Thus, it has 
received significant attention in the last 
few decades. Traditionally, graph embed-
ding, which aims to represent a graph 
structure on a d-dimensional space pre-
serving some predefined graph’s proper-
ties, became a popular technique to 
extract the hidden knowledge present in 
such a rich structure. However, to date 
research has primarily focused on a 
node level representation where each 
node is associated to a vector, such that 
two “related” nodes have similar vector 
representations [1].

While most of the previous works 
focus on the microscopic architectures 
formed between nodes [2]–[9], in this 
paper, we also focus on preserving the 
communities structures formed by dense-
ly connected nodes. Community embed-
ding is useful for many community-level 

Digital Object Identifier 10.1109/MCI.2019.2919396
Date of publication: 17 July 2019

Corresponding Author: Vincent W. Zheng (Email: 
 vincent.zheng@adsc-create.edu.sg).

©ISTOCKPHOTO.COM/AELITTA



40    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2019

applications, e.g., for community visual-
ization to help generate insights from big 
graphs, or community recommendation 
to search for similar communities.

If the concept of community appears 
self-explanatory, there is no commonly 
accepted quantitative definition for it. 
Indeed, communities are one of the most 
prominent and complex networks’ features 
since blurred overlapping boundaries 
characterize them whereas nodes can 
simultaneously belong to different com-
munities at the same time. According to 
the general definition: a community 
embedding should be a low-dimensional 
representation for a community. Given 
that a group of densely connected nodes 
forms a community, its embedding is 
expected to characterize how the nodes’ 
member spreads in the low-dimensional 
space. As a consequence, we need to define 
the community embedding as a distribu-

tion over the same node embedding 
space, instead of using a new dl-dimen-
sional vector to represent a community. To 
this end, we are inspired by the Gaussian 
Mixture Model (GMM) [10] to obtain a 
probabilistic representation where each 
community is defined as a multivariate 
Gaussian distribution in the node embed-
ding space. In so doing, each node affects, 
in big or small proportion, the representa-
tion of each community, while a commu-
nity provides an explicit representation of 
how the nodes spread in the latent space.

In Fig. 1, we use the well-studied 
Karate Club [11] graph to demonstrate 
community embedding in a 2D space. 
As shown in Fig. 1a, the Karate Club 
graph represents the friendship connec-
tion among the members of a university 
Karate club. The graph is characterized 
by 34 nodes, 78 edges and the presence 
of 2 distinct communities formed after 

the club partitioned due to some inter-
nal management divergence. It is also 
known that during the partitioning 
phase, some members are declared sup-
porters of the instructor’s partition 
(node 1), while others are supporters of 
the club administrator (node 34). 
Among the others, some nodes (i.e. 
node 9) are known to support both 
groups. We denote such nodes as “weak 
supporters” of both communities since 
they neither fully support the adminis-
trator nor the instructor partition. In 
Fig. 1c and 1d, we visualize both the 
nodes and their communities in a 2D 
space respectively for ComE and ComE+. 
Consequently, as shown in Fig.  1, 
according to our definition, we visualize 
the communities as two ellipses, each of 
which is characterized by a 2D mean 
vector and a 2 2#  co-variance matrix.

Learning community embedding is 
non-trivial. To have meaningful commu-
nity embedding, we first need to identify 
the communities accurately. A straight-
forward approach to community embed-
ding is to: 1) run community detection, 
such as Spectral Clustering [12], on the 
graph Laplacian matrix to get communi-
ty assignments for each node; 2) apply 
node embedding, such as DeepWalk [3] 
or Node2Vec [13], on the graph to get 
an embedding vector for each node; 3) 
aggregate the node embedding vectors 
in each community, to fit a (multivariate 
Gaussian) distribution as its community 
embedding. Such a pipeline approach is 
sub-optimal because its community 
detection is independent of its node 
embedding. Moreover, in practice, it is 
possible that the number of communities 
is unknown in advance.

Recent works, such as [2], [6], [14], 
demonstrated that node embedding 
improves community detection perfor-
mance since can effectively preserve the 
network’s structure. However, few works 
consider node embedding and commu-
nity detection together; they either 
require extra supervision [7] or high 
computational complexity [15]. Further-
more, they embed a community in the 
low-dimensional space as a vector; thus 
they do not provide an easily interpreta-
ble representation.

3

0

–3

3

3

4

4

9

9
1

1

0 1.5 3 0 1.5 3

2.2

–0.4

–3

18 5 7 11
6

17

10

25
26

2128

32

29
20

1

3

34
33

30 2419
23

2715
16

31
9

14
8

4 2
13

22
12

(a)

Community
Detection

2

1 3

Community
Embedding

Node
Embedding

(b)

(c) (d)

FIGURE 1 Embedding nodes and communities in a 2D space. (a) Karate club graph, (b) closed 
loop for community embedding, (c) ComE visualization and (d) ComE+ visualization.

Given that a group of densely connected nodes  
forms a community, its embedding is expected to  
characterize how the nodes’ member spreads  
in the low-dimensional space.



AUGUST 2019 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    41

As shown in Fig. 1b, we propose 
the existence of a closed loop bet -
ween node embedding, community 
detection and community embedding. 
On the one hand, as overstated, node 
embedding has been proven useful to 
solve the community detection prob-
lem (i.e., ➀). The communities assign-
ment obtained can be used to fit 
meaningful community embedding 
(i.e., ➁). On the other hand, node 
embedding could be enhanced by a 
relevant community embedding (i.e., ➂), 
since related but unconnected nodes 
can be enforced to be similar in the 
embedding space.

Suppose for a community k  to 
already has its community embedding as 
a multivariate distribution in a low-
dimensional space. Then, we can enforce 
community k’s member nodes to scatter 
nearly its community embedding’s cen-
troid even if the nodes are not directly 
linked together. Compared with first- 
and second-order proximity, community 
embedding does not focus on well-
defined microscopic structure but 
instead focus on the complex mesoscop-
ic construction generated by densely 
connected nodes. This introduces a 

community-aware high-order 
proximity to the node embedding.

Guided by the closed loop, in 
ComE [22], we formally define com-
munity embedding as a multivariate 
Gaussian distribution. Let us denote a 
graph as ( , ),G V E=  where V  is the set 
of nodes, and E is the set of edges. We 
introduce node embedding to incorpo-
rate both first- and second-order prox-
imity on .G  Based on the node 
embedding, we detect K  communities 
(K  is known and finite) and fit their 
community embedding. As a closed 
loop, community assignments and com-
munity embedding can help node 
embedding to preserve the high-order 
community-aware proximity. Then, we 
develop an efficient iterative optimiza-
tion algorithm for inference with com-
munity detection, community embedding 
and node embedding.

In this work, we further propose 
ComE+ for community embedding 
with an unknown number of communi-
ties (i.e., K  is unknown and can be infi-
nite), which is a typical scenario in 
practice. Note that recent studies [23]–
[25] demonstrated the absence of a uni-
versal consensus on which is the best 

model for community detection; while 
they also highlight how the graph’s meta-
data is not always related to the meso-
scopic network’s structure. Hence, it is 
important to maintain a self- explanatory 
community structure and automatically 
detect the number of communities from 
the data distribution. For ComE+, we 
also aim to model the closed loop in Fig. 1b, 
yet with special consideration of model-
ing an infinite number of communities in 
detection and embedding. To realize this 
infinite community embedding, we are 
inspired by Infinite Gaussian Mixture 
(IGM) [26] to adopt a Bayesian modeling 
framework. We first take a simple stick-
breaking construction approach [27] to 
generate up to an infinite number of 
communities and compute each node’s 
community assignment accordingly. Then, 
we sample the node embedding from the 
community embedding, and later opti-
mize it w.r.t. the first- and second-order 
proximity. We then develop an efficient 
iterative inference algorithm for ComE+. 
Given a finite dataset, our inference algo-
rithm can let the data automatically 
decide the exact number of communities 
for embedding. In Fig. 1d, we show that 
ComE+ manages to correctly infer 

TABLE I Comparison with related work. Here, “●” indicates an property as explicitly defined, and “&” indicates an property as implicitly 
derived. Complexity is defined over only graph-related factors.

NODE EMBEDDING 

COMM. 
EMBED.

COMM. 
DETECT.

INFINITE 
COMM. COMPLEXITY 1ST-ORDER 2ND-ORDER 

HIGHER-
ORDER 

DEEPWALK [3] ● (| | | |)logO V V

NODE2VEC [13] ● (| | | | | | )logO V V V a2+  

LINE [16] ● ● ( | |)O a E

SDNE [17] ● ● ( | |)O a V

GRAREP [2] ● (| | )O V 3

STRUC2VEC [18] ● (| | )O V 3

METAPATH2VEC [19] ● (| |)O V

SPECTRAL [12] ● (| | )O V 3

PRUNE [20] ● & & (| |)O E

DNR [7] ● ● (| | )O V 2

M-NMF [15] ● ● ● & ● ( | | )aO V 2

LPCM [21] ● ● ● ● (| | )O V 2

COME [22] ● ● ● ● ● (| | | |)O V E+

COME+ (THIS WORK) ● ● ● ● ● ● (| | | |)O V E+



42    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2019

K 2=  and embed the two overlapping 
communities in the 2D space.

We summarize our contributions as 
follows: 

 ❏ We contribute with a comprehensive 
literature review and complexity 
analysis summarized in Tab. I.

 ❏ We further extend ComE to ComE+ 
to better handle the unknown num-
ber of communities for community 
embedding. To the best of our knowl-
edge, this is the first node embedding 
model able to automatically infer the 
number of communities from the 
data distribution while preserving 
this structure during the embed-
ding process.

 ❏ We designed a new variational infer-
ence model for ComE+ while main-
taining the inference algorithm 
complexity as low as ( ).EO V; ; ; ;+

 ❏ We evaluate ComE+ on seven public 
real-world datasets with various 
application tasks. We relatively 
improve state-of-the-art baselines 
across datasets by at least 0.3%–17.1% 
(Conductance) and 0.8%–6.7% 
(NMI) in community detection, 
0.8%–25.4% (Macro-F1) and 0.3%–
34.7% (Micro-F1) in node classifi-
cation. Detailed settings for these 
improvements are reported in Sec. V.

II. Related Work
As our task uses graphs as input, we 
first review the literature on graph 
embedding. Then we review the litera-
ture on community detection since it is 
our key notion. Finally, as we use a 
Bayesian definition for community 
embedding, we review the literature on 
Bayesian embedding.

A. Graph Embedding
Most graph embedding work focuses 
on nodes [28]–[30]. For example, earlier 
methods, such as Laplacian eigenmap 
[31] and IsoMap [32], aim to preserve 
first-order proximity by extracting lead-
ing eigenvectors of a graph affinity 
matrix. Recent work starts to exploit 
deep learning to learn node representa-
tions. For example, DeepWalk [3], mod-
els second-order proximity based on 
path sampling, and it has an inference 

complexity of ( ).logO V V; ; ; ;  Node-
2Vec [13] extends DeepWalk with a 
controlled path sampling process, which 
requires an additional ( )O V a2; ;  factor 
where a is the average degree of the 
graph. LINE [16] and SDNE [17] pre-
serve both first- and second-order 
proximity at the price of a higher com-
plexity with ( )O a E; ;  and ( ),O a V; ;  
respectively. Both metapath2vec [19] 
and struct2vec [18] consider second-
order proximity for node embedding. 
GraRep [2] and HOPE [33] preserve 
high-order proximity by learning node 
embedding from multi-step Katz index 
matrix or PageRank matrix. Particular-
ly, GraRep runs Singular Value Decom-
posi t ion (SVD), which requires 

( )O V 3; ;  in general. Compared with our 
ComE and ComE+, the above work 
neither explicitly detects nor represents 
the communities.

Community structure is an impor-
tant network property, yet it is underex-
plored in graph embedding. For example, 
SAE [6] builds a normalized similarity 
matrix with complexity ( ),O E; ;  and 
learns node embedding by reconstruct-
ing the matrix by stacked Auto-Encoder 
with ( )O V; ;  complexity. It further 
applies K-means clustering to detect the 
communities. DNR [7] constructs a 
modularity matrix from the graph with 

( )O V 2; ;  complexity, then it applies 
stacked Auto-Encoder on the matrix 
with must-link supervision to generate 
node embedding. PRUNE [20] con-
structs a Pointwise Mutual Information 
(PMI) matrix to model global node 
ranking and first-order proximity by 

( ).EO ; ;  Both the PMI matrix and the 
edge representation are argued to 
implicitly preserve the community 
structure as well as the second-order 
proximity. There is limited work on 
explicitly modeling communities in 
g raph embedding. For example, 
M-NMF [15] constructs the modularity 
matrix with ( )O V 2; ;  complexity, then 
applies non-negative matrix factor-
ization to learn node embedding and 
detect communities together with 

( )O V 2; ;  again. Compared with our 
work, M-NMF uses the modularity as a 
distance metric and embeds each com-

munity with a vector instead of a distri-
bution; thus it is unable to fully characterize 
the community. Finally, refer to [1] for a 
comprehensive survey on graph embed-
ding methods.

B. Community Detection
Community detection aims to discover 
groups of nodes in a graph, such that the 
intra-group connections are denser than 
the inter-group ones [34]. Most of exist-
ing work first embeds the nodes in a 
low-dimensional space by either feature 
engineering, graph embedding or linear 
coding [35]. Then they apply clustering, 
e.g., spectral clustering [12], Laplacian 
regularized GMM [36] or neural net-
works [6], [14], on the nodes for com-
munity detection. Despite the success of 
these methods, their results are sub- 
optimal since their node embedding 
does not explicitly consider the com-
munity structure.

Recent work advances community 
detection by exploiting rich types of 
interaction on a social network such as 
content [37], attributes [38] and infor-
mation diffusion [39]. Additionally, some 
methods exploit opportunities of cou-
pling community detection with other 
tasks, such as hole spanner detection 
[40] or social role detection [41]. Com-
paratively, we are different in that: 1) we 
particularly consider graph embedding, 
whereas the above community detection 
work generally does not; 2) we focus on 
the most basic graph setting where we 
have a homogeneous graph as input, 
whereas some community detection 
work may require additional inputs of 
the graph.

C. Bayesian Embedding
Most graph embedding tries to embed a 
node into a “point” vector space [3], [42]. 
As a community has to characterize both 
what its member nodes are and how 
they spread, we consider a Bayesian defi-
nition of community embedding. That is: 
we define each community embedding 
as a distribution rather than a point in 
the low-dimensional space. Little work 
considers Bayesian embedding. For 
example, GenVector [43] embeds each 
social network user and each word as a 



AUGUST 2019 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    43

vector, then tries to infer latent topics 
from each user’s social posts, which are 
assumed to generate the user/word 
embedding. However, our work is differ-
ent: 1) GenVector considers graphs with 
content, but we consider basic homoge-
neous graphs; 2) it neither considers 
community nor tries to improve node 
embedding by community detection.

There is some close work to consider 
communities in Bayesian graph embed-
ding. For example, LPCM (latent posi-
tion cluster model) [21] embeds each 
node as a vector, and models the first-
order proximity by a logistic function. It 
also models each node’s embedding as 
generated by its communities’ multivari-
ate Gaussian distributions. However, its 
number of communities is finite and 
given. An extension of LPCM is consid-
ered in [44] with a more efficient infer-
ence algorithm, and a different likelihood 
function of LPCM is explored in [45] for 
quantifying the residual uncertainty of 
model parameters. Our work is different 
from the above work: 1) they cannot 
handle an infinite number of communi-
ties; 2) they overlook the second-order 
proximity in node embedding.

III. Problem Formulation
Traditional graph embedding aims to 
learn a node embedding for each v Vi !  
as Ri

d!z  while we also try to learn 
community embedding. Suppose there 
are K  communities in a graph ,G  where 
K  can be either known or unknown. 
For each node ,vi  we denote its com-
munity assignment as { , , }.z K1i f!  
Then, we can formally define a commu-
nity embedding as Def. III.1.

Definition III.1
Community embedding of a com-
munity k  (with { , , })k K1 f!  in a 
d-dimensional space is a multivariate 
Gauss ian di s t r ibution ( , ),N k k} R  
where Rk

d!}  is a mean vector and 
Rk

d d!R #  is a covariance matrix.
As a final goal we aim to learn:

1) node embedding iz  for each node 
;v Vi !

2) community membership ,ikr  such that 
,1ikk

K
1rR ==  for each node v Vi !  

and each community { , , };k K1 f!

3) community embedding parameters 
( , )k k} R  for each community k ! 
{ , , }.K1 f

In the next section, we are going to 
define the learning procedure for the 
node embedding and the community 
embedding with an infinite the number 
of communities1.

A. Node Embedding
Traditionally, node embedding focuses 
on preserving first- or second-order 
proximity between nodes. To this end, 
ComE+ share the same node embed-
ding formulation originally proposed in 
ComE [22].

First-Order Proximity
Based on LINE [16], we define the first-
order proximity as:

 ( ),logO
( , )

l
T

i
v v E

1

i l

v z z=-
!

/  (1)

where ( ) /( ( ))expx x1 1v = + -  is a sig-
moid function. In doing so, Eq. 1 enforc-
es direct neighbors nodes to have similar 
embedding.

Second-Order Proximity
DeepWalk [3] is the first work that pro-
poses a path sampling approach to pre-
serve the neighbors’ similar ity. To 
achieve its purpose, each node is 
exploiting two roles: as a node for itself 
and as context for a “close” node in the 
path. Thus an extra context embedding 

Rj
d!zl  is introduced. In the original 

DeepWalk statement a hierarchical soft-
max generative process was proposed, 
instead based on ComE we adopt a neg-
ative sampling [46] approach to approxi-
mate how well vi  generates its contexts 
nodes .v Cj i!  We formulate the learn-
ing process as:

( )

[ ( )],

log

logE ( )

m

ij j
T

i

v P v l
T

i
t 1

l n l

T v z z

v z z

=

+ -+

=

l

l/  
(2)

where ~ ( )v P vl n l  denotes sampling a 
node v Vl !  as a “negative context” of 
vi  according to a probability ( ).P vn l  As 
described in [22] we set ( )P v a /

n l v
3 4

l?  
where avl  is vl ’s degree and m  represent 
the total number of negative contexts. 
Finally, to preserve the second order 
proximity, the subsequent loss is used:

 ,O ij
v Cv V

2
j ii

a D=-
!!

//  (3)

where 02a  is a trade-off parameter.

B. Community Detection and 
Embedding
Based on the multivariate Gaussian 
distribution ( , )N k k} R  as formulation 
for a community .z ki =  In ComE+ 
we are rather inspired by IGM [26] to 
sample the node embedding from an 
infinite number of ( , )k k} R ’s. This 
means that we have both k}  and kR  
governed by some prior distributions. 
Note that we are technically different 
from IGM in two aspects. Firstly, 
instead of trying to derive the posteri-
or under an infinity limit, we take a 
simpler stick-breaking construction 
approach [27] to generate an infinite 
number of communities and sample 
each node’s community assignment. 
Secondly, we take a variational infer-
ence approach to approximate the 
posterior for the community embed-
ding’s random variables.

Overall, it is possible to summarize 
the generative process for ComE+ as:

 ❏ Draw ( , ),1Bk +r t  for , , ;k 1 2 f=

 ❏ Draw ( , ),0 INk +}  for , , ;k 1 2 f=

 ❏ Draw ( , ),IWk
1+ oR-  for , , ;k 1 2f=

 ❏ For each node :vi

1 A graphical model for ComE+ is provided at http://
sentic.net/graph-model.pdf

To jointly optimize node embedding and community 
embedding, we exploit a similar coordinated learning 
process like the one proposed in ComE. That is, we also 
apply iterative optimization between (U, U’) and q.



44    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2019

– Draw ( );z SBCi + r

– Draw ( , ).Ni z z+z } Ri i

Specifically, we denote ( , )a bB  as a 
Beta distr ibution, where a 02  and 
b 02  are the parameters. We denote 

( , )AW o  as a Wishart distribution, with 
a positive definite scale matrix A Rd d! #  
and degrees of freedom .d 12o -  De -
note I  as a d d#  dimensional identity 
matrix. We denote 02t  and 02o  as 
the hyper-parameters for the prior dis-
tributions of k}  and kR  respectively, 
describing how many latent compo-
nents to activate and how small the 
Gaussian covariance can be. Additionally, 

( )z SBCi + r  is a stick-breaking con-
struction, where given an infinite 
dimensional vector [ , , ],1 2 fr r r=  we 
compute the mixture probability for 
each community k  as

( ), , , .k1 1 2fork k j
j

k

1

1

fh r r= - =
=

-

%  (4)

Based on the resulting infinite dimen-
sional vector [ , , ],1 2 fh h h=  we draw 
the community assignment indicator 

{ , , }z 1 2i f!  for each node vi  by a 
multinomial distribution:

 ( ), , , .z i V1Multi fori f+ ; ;h =  (5)

For notation simplicity, we denote Z = 
{ , , }z zN1 f  as the community assign-
ments for N  nodes and {( , ),1 1}X R=   
( , ), }2 2 f} R  as the infinite community 
embeddings. Finally, we denote W = 
{ , , } .Zr X  Given the node embeddings 
U for a graph ,G  the primary purpose 
is to infer the posterior distribution 

( ; , ),p W ; t oU  which identifies com-
munity assignments and communi-
ty embedding.

C. Closing the Loop
As for ComE, also in ComE+, we aim to 
realize the closed loop shown in Fig. 1b, 
yet in an infinite community setting. 
Effectively, learning node embedding 
requires a Maximum A Posteriori (MAP) 
estimation, where we see O1 (Eq. 1) and 
O2  (Eq. 3) as modeling the likelihood of 

iz ’s, and ( , )Ni z zi i+z } R  as modeling 
the prior. In contrast, to handle the infi-
nite number of communities, we need 
Bayesian inference. Thus, to optimize the 

ComE+ model we need to manage 
MAP estimation and Bayesian inference 
together. In general, there can be differ-
ent approaches to Bayesian inference. For 
example, [21], [43], [45] adopt a Markov 
chain Monte Carlo (MCMC) methods; 
to the other side [47] optimize the likeli-
hood function by stochastic gradient 
descent (SGD). In this work, we propose 
to use a variational inference formula-
tion as the objective function of 
ComE+. However, we resort to varia-
tional inference to develop an analytical 
form, which directly infers the posterior 
distribution of the Gaussian random 
variables and encodes the node embed-
ding prior by ( , ).N z zi} Ri  Specifically, 
we introduce a variational distribution 

( )q W  to approximate the posterior 
( ; , ),p W ; t oU  by minimizing the KL-

divergence between them:

( ( ) ( ; , ))

[ ( )] [ ( ; , )]

[ ( )] [ ( , , )]

( , ).

( ; , )
( )

log log

log log

log

log

KL q W p W

p W
q W

q W p W

q W p W

p

E E

E E

Eq

q q

q q

; ;

;

;

;

;

t o

t o

t o

t o

t o

U

U

U

U

U
=

= -

= -

+

; E

 (6)

As ( , )log p ; t oU  does not depend on ,q  
minimizing Eq. 6 is equivalent to:

 
[ ( , , )]

[ ( )].

max log

log

p W

q W

E

E

q
q

q

; t oU

-
 

(7)

Notice that ( , , )p W ; t oU  is the joint 
probability describing our generative 
process in Sec. III.B. Thus it naturally 
includes the formulation of ( , ),N z zi} Ri  
which can be used to optimize together 
with O1 and .O2  To this end, we define 
the objective function for inferring the 
community embedding’s posterior dis-
tribution, which also enables the higher-
order proximity for node embedding as:

 
[ ( , , )]

[ ( )] ,

log

log

O p W

q W

E

E

ComE
q

q

3 ;b t oU=-

-

+ ^
h  

(8)

where 02b  is a trade-off parameter. 
Finally, we define the overall objective 
function for ComE+ as:

( , , ) ( ) ( , )

( , ).

q O O

O q

LComE

ComE

1 2

3

U U U U U

U

= +

+

+

+

l l
 
(9)

IV. Inference
To jointly optimize node embedding 
and community embedding, we exploit 
a similar coordinated learning process 
like the one proposed in ComE. That is, 
we also apply iterative optimization 
between ( , )U Ul  and .q  Given ( , ),U Ul  
optimizing q is to infer the infinite com-
munity embedding. Given ,q  optimizing 
( , )U Ul  is to learn the node embedding 
with all types of proximity.

Fix ( , ),U Ul  optimize .q  For varia-
tional inference, we try to define ( )q W  
with a tractable form. Note that ( )q W  
is a distribution over an infinite set of 
( ,kr  ,zk  ,k}  )kR ’s. To make ( )q W  tracta-
ble, we follow [27] to truncate ( )q W  at 
a value ,K  by setting ( ) .q 1 1Kr = =  
According to Eq. 4, we have all the 

( ) 0k rh =  for .k K2  In so doing, K  
only serves as a maximum number of 
possible communities to be detected in 
the graph. Due to this truncation, we 
revise ( )q W  as ( , ),q W K  where K  is a 
variational parameter. We will empirical-
ly evaluate the model performance 
under different K  values in the experi-
ments. Then, we use mean-field approxi-
mation to factorize ( , )q W K  as:

( , ) ( ) ( )

( ) ( ),

q W K q q

q q z

,

,

k

K

k
k

K

k

B c
k

K

k
i

V

i

1 1

1

1

1

, ,k k k

k k i

1 2 r }

R

=

; ;

p

c c x

= =

=

-

=

% %

% % (10)

where we define ( )q , k, ,k k1 2 rc c  as a Beta 
distribution parameterized with 0,k 12c  
and ,0,k 22c  ( )q kk }x  as a multivariate 
Gaussian distribution parameterized 
with mean ,Rk

d!x  ( )q ,B c k
1

k k R
-  as a 

Wishart distribution parameterized with 
a positive definite scale matr ix 
B Rk

d d1 ! #-  and degrees of freedom 
,c 0k2  and ( )q ziip  as a multinomial dis-

tribution parameterized with i T!p  
(where T is a simplex). With the trun-
cated variational distribution ( , ),q W K  
we revise Eq. 8 as:

( , )

.

[ ( , , )]

[ ( , )]

log

log

O q K p W

q W K

E

E

ComE
q

q

3 ;
b

t oU U=-

-

+l ^
h (11)

Ultimately, we replace OComE
3

+ in Eq.  9 
with OComE

3
+l for inference. Due to space 



AUGUST 2019 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    45

limit, we skip the derivation details, and 
summarize the updates for each varia-
tional parameter in ( , )q W K  as2:

,1, ,k i k
i

V

1
1

c p= +
;;

=

/  (12)

,, ,k i j
j k

K

i

V

2
11

c t p= +
;;

= +=

//  (13)

 
( ) ( ) ,

B 1 I,

,

k i k
i

V

i k
i

V

i k i k
T

1

1

x x

p

p z z

= +

+ - -

; ;

; ;

=

=

e o/

/
 

(14)

,B c B cI , ,k k k i k
i

V

k k i k
i

V

i
1

1

1
1

1

x p p z= +
; ; ; ;

-

=

-

-

=

e eo o/ /
 (15)

  ,c 2 ,k i k
i

V

1

o p= + +
; ;

=

/  (16)

,e,
( , ) ( , ) [ ( )]log

i k
p z kE, , , ,k k

j

k
j j q i i1 2

1
1 2?p

;c c c c zK K+ + =
=

/

 (17)

where we define ( , ) ( ), , ,l l l1 2 1c c cK W= - 
( ),, ,l l1 2c cW +  given ( )$W  as a digamma 

function.
Fix q, optimize ( , ) .U Ul  We use 

MAP estimation to learn the node embed-
ding, given O1 and O2 as the likelihood 
terms and OComE

3
+l as the prior term for 

iz ’s. Optimizing O1 and O2 is straightfor-
ward and is similar to ComE’s inference. 
Specifically, for each ,v Vi !  we have:

( ) ,O
( , )i i j E j

T
i j

1

2
2
z

v z z z=- -
!

/  (18)

j( )

[ ( )( )] .

O

E ( )

m

i

T
i

v C

v P v l
T

i l
t

j
2

1

j i

l n l

2
2
z

a v z z z

v z z z

=- -

+ -

!

+

=

l l

l l

;

E

/

/
  (19)

We also compute the gradient for 
context embedding as:

( ) ( )

[ ( ) ( )( )] .

O v C

v vE ( )

m

j
j i j

T
i i

v V

v P v
t

l j l
T

i i

2

1

i

l n l

2
2 !
z

a d v z z z

d v z z z

=- -

+ = -

!

+

=

l
l

l

;

E

/

/
 (20)

Instead, optimizing OComE
3

+l requires 
some more simplification. In Eq. 11, 
only the last term depends on iz ’s; thus 
we can simplify OComE

3
+l as:

( ) [ ( , )

( ) ( )( )

logO K p

K B c2
1·

E

,

ComE
q

i

V

i z z

i k
k

K

i

V

i k
T

k k i k

3
1

11

1

i i;

?

b
z }

b
p z x z x

U R=-

- -

; ;

; ;

+

=

==

-

m /

//
 (21)

and compute the gradient over iz  as:

( ) ( ).O
K B c,

i

ComE

i k k k i k
k

K
3 1

12
2

z

b
p z x= -

+
-

=

m /
 (22)

Finally, we have the total gradient for 
each iz  defined as:

.O O OL
i i i i

ComE
1 2 3

2
2

2
2

2
2

2

2

z z z z
= + +

+
l m

 (23)

Algorithm and complexity. We 
summarize the inference algorithm of 
ComE+ in Alg. 1. In line 1, for each 

,v Vi !  we sample c  paths starting from 
vi  with length , on G. In line 2, we ini-
tialize ( , )U Ul  by DeepWalk.

In lines 4–5, we fix ( , )U Ul  and opti-
mize ( , )q W K  for community detection 
and embedding. In lines 6–11, we fix 
( , )q W K  and optimize ( , )U Ul  for node 

embedding. We analyze the complexity 
of Alg. 1.

Path sampling in line 1 takes ( ).O V ,; ;c  
Parameter initialization by DeepWalk in 
line 2 takes ( ).O V; ;  Optimizing the vari-
ational parameters ( , )q W K  in line 5 
takes ( ).O V K; ;  Node embedding w.r.t. 
first-order proximity in lines 7 takes 

( ).O E; ;  Node embedding w.r.t. second-
order proximity in lines 9–11 takes 

( ).O V ,; ;c  Node embedding w.r.t. 
community-aware high-order prox-
imity in lines 12–13 takes ( ).O V K; ;  
In total, the complexity of Alg. 1 is 

(O V V T1,; ; ; ;c + +  # (T V K K2 ; ; + + 
)),E V V K,; ; ; ; ; ;c+ +  which is still lin-

ear to the graph size (i.e., V; ; and ).E; ;

V. Experiments
In this section, we evaluate ComE+ on 
six real-world datasets under two appli-
cation tasks, including node classification 
and community detection3. Compared 

Algorithm I Inference algorithm for ComE+.

 Input:  graph ( , )G V E= , variational parameter ,k  #(paths per node) ,c  walk length 
,,  context size ,g  embedding dimension ,d  negative context size ,m  

 parameters ( , ).a b

 Output:  node embedding ,U  context embedding ,Ul  community embed-
ding  posterior distribution q

 1 P  !  SamplePath( , );G ,
 2 Initialize U  and Ul by DeepWalk [3] with ;P
 3 for :iter T1 1=  do
 4  for :subiter T1 2=  do
 5    Optimize ( , )q W K  by Eq. 12–17 given ;U
 6  end
 7  foreach edge ( , )i j E!  do
 8    SGD on iz  and jz  by Eq. 18;
 9  end
10  foreach path p P!  do
11    foreach vi  in path p do
12      SGD on iz  by Eq. 19;
13      SGD on jzl ’s within g  hops by Eq. 20;
14    end
15  end
16  foreach node v Vi !  do
17    SGD on iz  by Eq. 21;
18  end
19 end

3 Due to space limitation: 1) the graph visualization per-
formance, 2) the ComE clustering results, 3) the com-
plete set of node classification experiments and 4) impact 
of some parameters like ,a b  and the embedding size 
are reported at the following link: http://sentic.net/
node-classification.pdf

2 The full derivation can be found at the following link: 
http://sentic.net/derivation.pdf



46    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2019

with our previous work [22], we intro-
duce three more benchmark datasets for 
evaluation as well as a sensitivity analysis 
of the hyperparameters present in 
ComE and ComE+.

Datasets. To evaluate our models, 
we decided to use different types of 
graphs, ranging from social networks, 
word co-occurrence network and aca-
demic paper citation networks. Fol-
lowing there is a short description of 
each graph:

 ❏ BlogCatalog is a social network for 
blogger. Each node represents a user, 
and each edge represents a friendship 
connection. It has to be noted that 

this dataset present multiple labels for 
each node.

 ❏ Wikipedia is a co-occurrence net-
work of words appearing in the first 
million bytes of English Wikipedia 
dump on Mar. 3, 2006. Each word 
has its Part-of-Speech annotations as 
multi-labels.

 ❏ DBLP is an academic paper citation 
network built upon the DBLP 
repository. Formally, we selected 19 
of the major conferences on five 
computer science research areas (i.e., 
the entire list is reported in Tab. II). 
Each node is a paper, and each edge 
represents a citation that the cur-
rent paper has to others selected 
articles. The label of the node indi-
cates its conference venue (i.e., one 
of the five areas).

 ❏ Rochester, Mich and Amherst are 
three Facebook networks formed by 
students from the same universities. 
Each node is a student, while each 
edge is a fr iendship connection. 
The matriculation year is used as 
node’s label. Note that we removed 
all the isolated and unlabeled nodes 
for evaluations.

Evaluation metrics. In literature, 
there are multiple possible evaluation 
metric for community detection and 
node classification. However, we will use 
Conductance [48] and Normalized 
Mutual Information (NMI) [6] to evalu-
ate the community detection perfor-
mance. Conductance is a ratio between 
the number of edges leaving a commu-
nity and that within it. NMI measures 
the closeness between predicted com-
munity labels with ground truth node 
labels, but it is formally defined only for 
single label datasets. Instead, to evaluate 
node classification, we use Micro-F1 and 
Macro-F1 [3]. Micro-F1 is the overall F1 
w.r.t. all labels. Macro-F1 is the average 
of F1 score w.r.t. each individual label.

Baselines. We compare the proposed 
models with the following baselines, 
using their author-published codes 
whenever possible, on all the datasets.

 ❏ DeepWalk [3]: as state in Sec. II, it 
only models second-order proximity.

 ❏ LINE [16]: it extend the DeepWalk 
model to consider both first- and 
second-order proximity.

 ❏ Node2Vec [13]: exploit a guided path 
sampling strategy to better exploits 
homophily and structural roles in 
embedding.

 ❏ GraRep [2]: a model able to capture 
the higher-order proximity in ran-
dom walk.

 ❏ M-NMF [15]: it jointly models 
nodes and communities by non-neg-
ative matrix factorization.

 ❏ PRUNE [20]: it models first-order 
and global ranking by siamese neural 
networks.
Parameters and environment. All the 

tested models need a specific embed-
ding dimension value: thus we set 

.d 128=  DeepWalk, Node2Vec, ComE 
and ComE+ have also the additional 
parameters ,c  ,g  , and .m  For consistency, 
we followed the results obtained in [3], 
[13] setting ,10c g= =  80,=  and .m 5=

Node2vec has two more parameters 
p  and .q  We set their values with the 
best performance on BlogCatalog (i.e., 

.p 0 25=  and . )q 0 25=  and Wikipedia 
(p 4=  and )q 1=  as reported in [13] 
while for the other four datasets, we 
followed the same parameter tuning 

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
Cond. NMI Cond.

1

0.8

0.6

0.4

0.2

0
Cond.

(a) (b) (c)

(d) (e) (f)

1

0.8

0.6

0.4

0.2

0
NMI NMICond.

1

0.8

0.6

0.4

0.2

0
Cond.

1

0.8

0.6

0.4

0.2

0
NMI Cond.

LineDeepWalk GraRep
Node2Vec

M-NMF
PRUNE ComE+

FIGURE 2 ComE+ community detection results. The smaller conductance/bigger NMI, the bet-
ter. (a) BlogCatalog, (b) DBLP, (c) Wikipedia, (d) Rochester, (e) Mich and (f) Amherst.

TABLE II DBLP dataset labels.

CONFERENCE LABEL 

EMNLP, ACL, CONLL, 
COLING 

NLP

CVPR, ICCV, ICIP, 
 SIGGRAPH 

COMPUTER 
VISION

KDD, ICDM, CIKM, 
WSDM 

DATA MINING 

SIGMOD, VLDB/PVLDB, 
ICDE 

DATABASE 

INFOCOM, SIGCOM, 
MobiHoc, MobiCom

NETWORKING 



AUGUST 2019 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    47

procedure, and we found that: on DBLP, 
Rochester and Mich, .q 0 25=  and 

.p 0 25=  work at best; while on Amherst, 

.p 0 25=  and q 1=  is the outstand-
ing setting.

M-NMF has three more parameters 
,a  b and .K  We experimentally tuned a  

and b in the range [0.1, 1, 5, 10] while 
keeping the other parameter fixed. The 
final setting is: .0 1a=  and 5b=  for 
BlogCatalog and Wikipedia; 1a=  and 

5b=  for Rochester, Mich and Amherst; 
while for DBLP we used 10a=  and 

.5b=  Finally, we set K  as the number 
of labels present in the dataset.

Compared to the others methods, 
PRUNE uses as input only the edges of 
a network. To make a fair comparison, 
we set the number of training epochs so 
to obtain a comparable amount of train-
ing instances w.r.t. the others models.

As for M-NMF, also ComE and 
ComE+ have three parameters to tune. 
The impact of K  is evaluated in 
Sec. V-C, but if not otherwise stated we 
used .0 1a=  and .0 1b=  for all the 
ComE experiments. While, for ComE+, 
we used .0 1a=  and .0 1b=  on Blog-
Catalog, Wikipedia and karate Club, but 

.0 1a=  and 1b=  is used for the 
remaining datasets. Finally, in Sec. V-A 
and V-B K 50=  is used as an upper 
bound on all but the DBLP dataset, 
where K 02=  is used for the ComE+ 
experiments. Instead, the ComE’s results 
are obtained setting K  as the number of 
unique labels.

A. Community Detection
Community detection is known to be 
an unsupervised learning task aiming at 
predicting the most likely community 
assignment for each node. We employed 
the following steps for evaluation: firstly, 
we learned a node embedding for the 
entire graph; then, we applied a cluster-
ing algorithm to derive the associated 
communities for each node. However, 
since it does not exist a commonly 
accepted method to compute the NMI 
on multi-label datasets, for BlogCatalog 
and Wikipedia we only report the Con-
ductance w.r.t. the first label. Observe 
that we do not compare ComE+ w.r.t. 
ComE, because it assume different prior 

knowledge. To this end, we only report 
the comparison between ComE+ and 
the remaining baselines. Finally, each 
reported result is the average of 10 
independent evaluations with different 
initial centroids.

In general, ComE+ can outperform 
all the baselines in terms of Conductance 
by 0.75% to 5.17%. Regarding NMI, it 
can outperform all the baselines on DBLP 
(0.6%) and Mich (4.7%). However, it 
obtains comparable performance w.r.t. the 
best performing baseline on Rochester 
dataset (–0.28%); but GraRep significantly 
outperforms it on Amherst (–3.7%). This 
could be related to GraRep’s ability to 
build a higher order transition probability 
matrix over dense graphs, which avoids 
the limitations associated with the path-
sampling procedure. Moreover, an in-deep 
analysis of the datasets shows that Roch-
ester and Mich present communities 
formed by a single node which is a chal-
lenging scenario to model using a proba-
bilistic approach. Overall, the NMI 
improvements are relatively smaller than 
the one obtained on Conductance. This 
suggests that node embedding methods 
tend to create multiple sub-clusters for 
the same community. Hence it can cre-
ate small homogeneous clusters (i.e., for 
Conductance), but it becomes less accu-
rate when inferring the value of K (i.e., 
for NMI). Finally, the robust perfor-
mance of ComE+ suggests that model-
ing community detection together with 
node embedding is better than solving 
them separately.

B. Node Classification
In node classification, the goal is to cate-
gorize each node into one or more 
classes, depending on whether it is a sin-
gle-label or multi-label setting. We fol-
low [3] to first train graph embedding 
on the whole graph. Then, we randomly 
split 80% of the nodes as a training set 
and the remaining 20% is used for test-
ing. Finally, an SVM classifier [49] is 
used to infer the node labels. So far, we 
report the results with the SVM classifi-
er parameter ,c 1=  which was suggested 
by [3], for all the methods. We observed 
a similar trend with [ . , ],c 0 1 10!  and 
due to space limitations, we skip the 

results with different c values. Note that, 
the reported results are the average of 10 
experiments executed with different 
random sampling. As over-state, for 
ComE we set . ,0 1a=  .0 1b=  and K  
as the number of labels present in each 
dataset. Instead, the settings for ComE+ 
are: .0 1a=  and .0 1b=  for BlogCata-
log and Wikipedia; while the remaining 
datasets perform better with .0 1a=  
and .1b=

From Tab. III it is possible to do 
some interesting observations. At first, 
our ComE and ComE+ are generally 
better than all the baselines concern-
ing both Macro-F1 and Micro-F1. In 
 particular, ComE+ can improve the 
baselines by . % . %0 8 25 4-  on Macro-
F1 and . % . %0 3 34 7-  on Micro-F1. 
Secondly, ComE, and ComE+ have 
comparable performance on DBLP, 
BlogCatalog, Mich and Wikipedia. On 
Rochester, ComE+ can outperform 
ComE in terms of Macro-F1, but they 
are comparable regarding Micro-F1. 
Instead, on Amherst ComE+ is outper-
forming ComE only according the 
Micro-F1 metric. The similar perfor-
mance between ComE+ and ComE on 
DBLP dataset could be related to the 
presence of a stronger community struc-
ture. However, ComE+ can better 
model multi-label datasets, indicating 
that it can solve the multiple member-
ship problems better or detect a more 
meaningful community structure [24] 
thanks to its variational inference algo-
rithm. Third, note that, on Rochester 
and Mich, also GraRep or M-NMF 
present strong performance. Fourth, on 
Amherst, the random walk based meth-
ods present poor performance w.r.t. the 
matrix factorization ones. We suggest 
that the high average degree of the data-
set, which inherently generates a denser 
adjacency matrix, could positively affect 
the factorization methods. Instead, the 
fixed number of paths sampled by the 
random walk methods cannot take 
advantage from such situation. DBLP, 
having a low average degree, also sup-
ports this hypothesis since Node2Vec 
appears to be the best baseline while 
matrix factorization methods suffer 
from the sparsity of the affinity matrix. 



48    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2019

Nevertheless, ComE, and ComE+ can 
partially overcome this limitation be -
cause they leverage community infor-
mation, validating the importance of 
jointly perform node and community 
embedding. Fifth, on average, among all 
the baseline, GraRep appears to be the 
best performing methods. This suggests 
that the higher-order transition probabil-
ity matrix contains valuable information, 
but comes at the price of an overall 
higher complexity ( ( )).O V 3; ;  Whereas, 
on the university Facebook data sets, 
M-NMF presents results comparable 
with the GraRep models, validating the 
importance of modeling communities in 
a network structure. Overall, the results 
validate the existence of a closed loop 
between mesoscopic communities struc-
ture and the microscopic nodes struc-
ture. That is, community information is 
not only useful for community-related 
tasks but also node related tasks.

C. Parameter sensitivity
In this section we are going to explore 
the performance of the ComE+ algo-

rithm for different parameter setting. 
Also, we focus on the comparison 
between ComE+ and ComE to evalu-
ate better the variational inference 
approach used for community detection 
and embedding.

1) Impact of K
As the main difference between ComE+ 
and ComE is the variational inference 
process, we compare the impact of 
parameter K  for both algorithms. Let us 
denote K l as the real number of com-
munities present in datasets. Then, we 
generate different embedding with K  
equal to the values [ , , , ]K3 10 20l  for 
DBLP and [ , , , , ]K5 10 50 100l  for all the 
other datasets. This enable us to evalu-
ate the robustness of the proposed 
approach w.r.t. the uncertainty in the 
number of communities.

From Fig. 3 we make the following 
observations. First, on DBLP, neither 
ComE nor ComE+ is sensitive to the 
setting of K  regarding node classifica-
tion, but both of them are sensitive to 
K  concerning community detection. 

Such behavior indicates that the SVM 
can exploit the RBF kernel to separate 
the nodes, while the generated node 
embedding misleads a traditional clus-
tering algorithm. On the one hand, the 
performance of ComE reaches the top 
when ,K K= l  while they reduce by a 
relative %140-  to %189-  in terms of 
Conductance and %.17 6-  to . %625-  
w.r.t. NMI. On the other hand, as 
expected, ComE+ is more robust when 

.K K$ l  That is, the ComE+ perfor-
mance only varies between %.1 4-  to 

. %0 2+  for the NMI metric and %.26 1-  
to %.2 3-  according to Conductance. 
Secondly, the models usually perform 
the best when K K= l in most cases, 
although on rare occasions (e.g., on 
Amherst) ComE+ has better perfor-
mance when .K K2 l  Although the 
improvement is not significant, this sug-
gests that the communities present in 
the data distribution do not adequate-
ly reflect the number of labels. Alter-
natively, it expresses the tendency of 
node embedding methods to create 
small sets of homogeneous nodes; thus, 

TABLE III Node classification results. Note that all the experiments are conduced with 80% of the total nodes as training set while 
the remaining 20% is used for evaluation.

BLOGCATALOG WIKIPEDIA DBLP 

MACRO-F1(%) MICRO-F1(%) MACRO-F1(%) MICRO-F1(%) MACRO-F1(%) MICRO-F1(%) 

COME 26.5 (P = 0.12) 41.7 (P = 0.06) 9.8 (P = 0.15) 44.0 (P = 0.13) 92.2 (P = 0.61) 92.6 (P = 0.47) 

COME+ 27.1 42.5 10.2 45.4 92.2 92.6 

DEEPWALK 22.2 (P < 0.01) 38.3 (P < 0.01) 4.6 (P < 0.01) 28.0 (P < 0.01) 91.2 (P < 0.01) 91.6 (P < 0.01)

LINE 10.9 (P < 0.01) 30.2 (P < 0.01) 5.3 (P < 0.01) 30.5 (P < 0.01) 90.4 (P < 0.01) 91.0 (P < 0.01)

NODE2VEC 24.1 (P < 0.01) 39.9 (P < 0.01) 6.1 (P < 0.01) 31.1 (P < 0.01) 91.5 (P < 0.01) 92.0 (P < 0.01)

GRAREP 23.6 (P < 0.01) 40.9 (P < 0.01) 8.1 (P = 0.09) 33.4 (P < 0.01) 90.6 (P < 0.01) 91.1 (P < 0.01)

M-NMF 15.7 (P < 0.01) 33.8 (P < 0.01) 7.0 (P < 0.01) 33.7 (P < 0.01) 89.6 (P < 0.01) 90.3 (P < 0.01)

PRUNE 4.6 (P < 0.01) 15.6 (P < 0.01) 4.9 (P < 0.01) 35.0 (P < 0.01) 22.4 (P < 0.01) 38.4 (P < 0.01)

ROCHESTER MICH AMHERST 

MACRO-F1(%) MICRO-F1(%) MACRO-F1(%) MICRO-F1(%) MACRO-F1(%) MICRO-F1(%) 

COME 49.7 (P < 0.05) 86.6 (P = 0.42) 36.9 (P = 0.61) 63.2 (P = 0.21) 65.7 (P = 0.5) 91.1 (P = 0.05) 

COME+ 53.7 86.8 37.3 64.1 66.6 91.6 

DEEPWALK 44.1 (P < 0.01) 82.9 (P < 0.01) 33.2 (P < 0.01) 60.9 (P < 0.01) 57.6 (P < 0.01) 88.5 (P < 0.01)

LINE 47.4 (P < 0.01) 85.4 (P < 0.05) 34.1 (P < 0.01) 61.5 (P < 0.01) 59.5 (P < 0.01) 88.9 (P < 0.01)

NODE2VEC 46.6 (P < 0.01) 82.6 (P < 0.01) 34.4 (P < 0.05) 61.6 (P < 0.01) 57.6 (P < 0.01) 89.4 (P < 0.01)

GRAREP 48.8 (P < 0.01) 86.5 (P < 0.01) 35.4 (P = 0.29) 63.0 (P = 0.13) 62.9 (P = 0.07) 91.0 (P = 0.08) 

M-NMF 48.3 (P < 0.01) 86.4 (P = 0.23) 34.3 (P < 0.05) 61.6 (P < 0.05) 60.0 (P < 0.05) 90.8 (P < 0.05)

PRUNE 13.2 (P < 0.01) 29.1 (P < 0.01) 11.6 (P < 0.01) 23.6 (P < 0.01) 12.7 (P < 0.01) 27.3 (P < 0.01)



AUGUST 2019 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    49

over-segmentation appears to be useful 
in modeling this behavior. Finally, as 
expected, the performance of ComE+ 
are more robust than ComE concerning 
both community detection and node 
classification especially when ,K K$ l  
validating the Bayesian inference process 
used to handle the uncertainty in the 
number of the community.

D. Convergence and efficiency
As final experiments, we compare the 
convergence and efficiency of both 
models. We record the value of the loss 
functions at the end of every iteration. 
As shown in Fig. 4, the loss of both 
ComE and ComE+ converge quickly 
within 2–3 iterations.

To demonstrate the efficiency of our 
models, we test them on all the six data-
sets at different scales. More precisely, for 
each dataset, we generate four subgraphs 
in which we keep 25%, 50%, 75% and 
100% of the total number of nodes and 
edges. It has to be noted that, to speed 
up the computation time of those 
experiments, we set d 2=  and .5g=  
The diagram in Fig. 5 shows the pro-
cessing time of ComE and ComE+ in 

different datasets. Clearly, the processing 
time of our algorithms is linear to the 
graph size (i.e., V; ; and ).E; ;  This vali-
dates our complexity analysis at the end 
of Sec. IV.

VI. Conclusion
In this paper, we studied the important 
(yet largely under-explored) problem of 
embedding communities on graphs. We 
have investigated the existence of a 
closed loop among community embed-
ding, community detection and node 

embedding that preserve a community-
aware higher-order proximity. More in 
detail, we extend the ComE algorithm 
to achieve such closed loop in a Bayes-
ian inference setting. The proposed 
ComE+ algorithm can better handle 
the uncertainty related to the unknown 
number of communities. We also designed 
an efficient iterative inference algorithm 
for ComE+, which can still retain a low 
complexity of ( ).O V E; ; ; ;+  We evaluat-
ed our model on seven real-world datas-
ets and with multiple application tasks. 

0 1 2 3 4 5 6 7 8 9
0

10 M

20 M

Iterations

0 1 2 3 4 5 6 7 8 9

Iterations
(a) (b)

Lo
ss

0

10 M

20 M

30 M

Lo
ss

BlogCatalog DBLP Wikipedia
Rochester Mich Amherst

FIGURE 4 Model convergence. (a) ComE+ and (b) ComE.

5 10 39 50 10
0

25

30

35

40

F
1 

S
co

re

F
1 

S
co

re

F
1 

S
co

re

F
1 

S
co

re

F
1 

S
co

re

F
1 

S
co

re

3 5 10 20

91

92

93

5 10 19 50 10
0

50
60
70
80
90

5 10 15 50 10
0

60

70

80

90

5 10 13 50 10
0

30

40

50

60

70

5 10 40 50 10
0

10
20
30
40

K ValueK ValueK ValueK ValueK ValueK Value
(f)(e)(d)(c)(b)(a)

K ValueK ValueK ValueK ValueK ValueK Value
(l)(k)(j)(i)(h)(g)

5 10 39 50 10
0

0.8
0.82
0.84
0.86
0.88
0.9

N
M

I/C
on

d.

N
M

I/C
on

d.

N
M

I/C
on

d.

N
M

I/C
on

d.

N
M

I/C
on

d.

N
M

I/C
on

d.

3 5 10 20

0

0.2

0.4

0.6

0.8

5 10 40 50 10
0

0.8

0.9

1

5 10 19 50 10
0

0.2

0.4

0.6

0.8

5 10 13 50 10
0

0.2

0.4

0.6

5 10 15 50 10
0

0.4
0.5
0.6
0.7
0.8
0.9

ComE+ (Marco-F1) ComeE+ (Micro-F1) ComE (Macro-F1) ComeE (Micro-F1)

ComE+ (NMI) ComeE+ (Conductance) ComE (NMI) ComeE (Conductance)

FIGURE 3 Impact of parameter .K  The smaller variance of the performance when K K$ l  suggests that ComE+ is more stable with respect to 
ComE. (a) BlogCatalog, (b) DBLP, (c) Wikipedia, (d) Rochester, (e) Mich, (f) Amherst, (g) BlogCatalog, (h) DBLP, (i) Wikipedia, (j) Rochester, 
(k) Mich and (I) Amherst.



50    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2019

We showed that our models outperform 
the state-of-the-art baselines across the 
datasets by at least 0.8%–6.7% (NMI) 
and 0.3%–17.1% (Conductance) in 
community detection, 0.8%–30.3% 
(Macro-F1) and 0.3%–48% (Micro-F1) 
in node classification. Finally, we studied 
the parameter sensitivity, model conver-
gence and model efficiency. Our models 
can converge quickly, and scale well 
w.r.t. the graph size .V E; ; ; ;+

In the future, we are interested in 
exploring the graphs with additional con-
tent or attribute information. Additionally, 
we are also interested in exploring com-
munity embedding in a dynamic graph 
setting, which is useful for many applica-
tions such as biology and finance.

References
[1] H. Cai, V. W. Zheng, and K. C. Chang, “A com-
prehensive survey of graph embedding: Problems, tech-
niques and applications,” CoRR, vol. abs/1709.07604, 
2017.
[2] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph 
representations with global structural information,” in 
Proc. CIKM, 2015, pp. 891–900.
[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: 
Online learning of social representations,” in Proc. KDD, 
2014, pp. 701–710.
[4] T. N. Kipf and M. Welling, “Semi-supervised clas-
sif ication with graph convolutional networks,” in Proc. 
ICLR, 2017.
[5] A. Garcia Duran and M. Niepert, “Learning graph 
representations with embedding propagation,” in Proc. 
NIPS, 2017, pp. 5125–5136.
[6] F. Tian, B. Gao, Q. Cui, E. Chen, and T. Liu, “Learn-
ing deep representations for graph clustering,” in Proc. 
AAAI, 2014, pp. 1293–1299.
[7] L. Yang, X. Cao, D. He, C. Wang, X. Wang, and 
W. Zhang, “Modularity based community detection with 
deep learning,” in Proc. IJCAI, 2016, pp. 2252–2258.
[8] C. Zhou, Y. Liu, X. Liu, Z. Liu, and J. Gao, “Scalable 
graph embedding for asymmetric proximity,” in Proc. 
AAAI, 2017, pp. 2942–2948.
[9] Q. Zhang and H. Wang, “Not all links are created 
equal: An adaptive embedding approach for social per-

sonalized ranking,” in Proc. 39th Int. ACM SIGIR Conf. 
Research and Development in Information Retrieval, ACM, 
2016, pp. 917–920.
[10] C. M. Bishop, Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). New York: Springer-
Verlag, 2006.
[11] W. W. Zachary, “An information f low model for 
conf lict and fission in small groups,” J. Anthropological 
Res., vol. 33, no. 4, pp. 452–473, 1977.
[12] L. Tang and H. Liu, “Leveraging social media 
networks for classif ication,” Data Min. Knowl. Discov., 
vol. 23, no. 3, pp. 447–478, 2011.
[13] A. Grover and J. Leskovec, “node2vec: Scalable fea-
ture learning for networks,” in Proc. KDD, 2016.
[14] M. Kozdoba and S. Mannor, “Community detec-
tion via measure space embedding,” in Proc. NIPS, 2015, 
pp. 2890–2898.
[15] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and 
S. Yang, “Community preserving network embedding,” 
in Proc. AAAI, 2017, pp. 203–209.
[16] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and 
Q. Mei, “Line: Large-scale information network embed-
ding,” in Proc. WWW, 2015, pp. 1067–1077.
[17] D. Wang, P. Cui, and W. Zhu, “Structural deep net-
work embedding,” in Proc. KDD, 2016, pp. 1225–1234.
[18] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, 
“Struc2vec: Learning node representations from struc-
tural identity,” in Proc. KDD, 2017, pp. 385–394.
[19] Y. Dong, N. V. Chawla, and A. Swami, “metapath-
2vec: Scalable representation learning for heterogeneous 
networks,” in Proc. KDD, 2017, pp. 135–144.
[20] Y.-A. Lai, C.-C. Hsu, W. H. Chen, M.-Y. Yeh, 
and S.-D. Lin, “Prune: Preserving proximity and global 
ranking for network embedding,” in Proc. NIPS, 2017, 
pp. 5263–5272.
[21] M. S. Handcock, A. E. Raftery, and J. M. Tantrum, 
“Model-based clustering for social networks,” J. Roy. 
Stat. Soc. A (Stat. Soc.), vol. 170, no. 2, pp. 301–354, 2007.
[22] S. Cavallari, V. W. Zheng, H. Cai, K. C. Chang, 
and E. Cambria, “Learning community embedding with 
community detection and node embedding on graphs,” 
in Proc. CIKM, 2017, pp. 377–386.
[23] H. Zhang, C. L. Giles, H. C. Foley, and J. Yen, 
“Probabilistic community discovery using hierarchical 
latent Gaussian mixture model,” in Proc. AAAI, 2007, 
vol. 7, pp. 663–668.
[24] L. Peel, D. B. Larremore, and A. Clauset, “The 
ground truth about metadata and community detec-
tion in networks,” Sci. Adv., vol. 3, no. 5, p. e1602548, 
2017.
[25] N. Veldt, D. F. Gleich, and A. Wirth, “A correla-
tion clustering framework for community detection,” 
in Proc. 2018 World Wide Web Conf. World Wide Web and 
Proc. Int. World Wide Web Conf. Steering Committee, 2018, 
pp. 439–448.
[26] C. E. Rasmussen, “The infinite Gaussian mixture 
model,” in Proc. NIPS, 2000, pp. 554–560.

[27] D. M. Blei and M. I. Jordan, “Variational inference 
for Dirichlet process mixtures,” Bayesian Anal., vol. 1, 
no. 1, pp. 121–144, 2006.
[28] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, 
“Matching node embeddings for graph similarity,” in 
Proc. AAAI, 2017, pp. 2429–2435.
[29] F. Nie, W. Zhu, and X. Li, “Unsupervised large 
graph embedding,” in Proc. AAAI, 2017, pp. 2422–
2428.
[30] W. L. Hamilton, R. Ying, and J. Leskovec, “Induc-
tive representation learning on large graphs,” in Proc. 
NIPS, 2017.
[31] M. Belkin and P. Niyogi, “Laplacian eigenmaps and 
spectral techniques for embedding and clustering,” in 
Proc. NIPS, 2001, pp. 585–591.
[32] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A 
global geometric framework for nonlinear dimensional-
ity reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 
2000.
[33] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, 
“Asymmetric transitivity preserving graph embedding,” 
in Proc. KDD, 2016, pp. 1105–1114.
[34] M. Wang, C. Wang, J. X. Yu, and J. Zhang, 
“Community detection in social networks: An in-
depth benchmarking study with a procedure-oriented 
framework,” PVLDB, vol. 8, no. 10, pp. 998–1009, 
June 2015.
[35] M. Shao, S. Li, Z. Ding, and Y. Fu, “Deep linear 
coding for fast graph clustering,” in Proc. IJCAI, 2015, 
pp. 3798–3804.
[36] X. He, D. Cai, Y. Shao, H. Bao, and J. Han,  “Laplacian 
regularized Gaussian mixture model for data clustering,” 
IEEE Trans. Knowl. Data Eng., vol. 23, no. 9, pp.  1406–
1418, 2011.
[37] M. Sachan, A. Dubey, S. Srivastava, E. P. Xing, and 
E. Hovy, “Spatial compactness meets topical consistency: 
Jointly modeling links and content for community detec-
tion,” in Proc. WSDM, 2014, pp. 503–512.
[38] Y. Sun, C. C. Aggarwal, and J. Han, “Relation 
strength-aware clustering of heterogeneous information 
networks with incomplete attributes,” PVLDB, vol. 5, 
no. 5, pp. 394–405, Jan. 2012.
[39] H. Cai, V. W. Zheng, F. Zhu, K. C. Chang, and 
Z.  Huang, “From community detection to commu-
nity prof iling,” PVLDB, vol. 10, no. 7, pp. 817–828, 
2017.
[40] L. He, C.-T. Lu, J. Ma, J. Cao, L. Shen, and P. S. Yu, 
“Joint community and structural hole spanner detection 
via harmonic modularity,” in Proc. KDD, 2016.
[41] Y. Han and J. Tang, “Probabilistic community and 
role model for social networks,” in Proc. KDD, 2015, 
pp. 407–416.
[42] A. Bordes, N. Usunier, A. García-Durán, J. Weston, 
and O. Yakhnenko, “Translating embeddings for model-
ing multi-relational data,” in Proc. NIPS, 2013, pp. 2787–
2795.
[43] Z. Yang, J. Tang, and W. W. Cohen, “Multi-modal 
Bayesian embeddings for learning social knowledge 
graphs,” in Proc. IJCAI, 2016, pp. 2287–2293.
[44] A. E. Raftery, X. Niu, P. D. Hoff, and K. Y. Yeung, 
“Fast inference for the latent space network model using a 
case-control approximate likelihood,” J. Comput. Graph. 
Stat., vol. 21, no. 4, pp. 901–919, 2012.
[45] S. Suwan, D. S. Lee, R. Tang, D. L. Sussman, 
M. Tang, and C. E. Priebe, “Empirical Bayes estimation 
for the stochastic blockmodel,” Electron. J. Stat., vol. 10, 
no. 1, pp. 761–782, 2016.
[46] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, 
and J. Dean, “Distributed representations of words and 
phrases and their compositionality,” in Proc. NIPS, 2013, 
pp. 3111–3119.
[47] H. Xiao, M. Huang, and X. Zhu, “TransG: A gen-
erative model for knowledge graph embedding,” in Proc. 
ACL, 2016, vol. 1, pp. 2316–2325.
[48] K. Kloster and D. F. Gleich, “Heat kernel based 
community detection,” in Proc. KDD, 2014, pp. 1386–
1395.
[49] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for 
support vector machines,” ACM Trans. Intell. Syst. Tech-
nol., vol. 2, no. 3, pp. 27:1–27:27, May 2011.

 

25 50 75 100
0

50

100

150

200

250

Node (%)

(a)

Node (%)

(b)

(s
)

(s
)

25 50 75 100
0

50

100

150

200

BlogCatalog DBLP Wikipedia
Rochester Mich Amherst

FIGURE 5 Model efficiency. Note that the average time per iteration is reported. (a) ComE+ 
and (b) ComE.


