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Abstract

Metaphor is not only a linguistic phenomenon but also re-
flects the concept projection between source and target do-
mains in human cognition. Previous sequence tagging-based
metaphor identification methods could not model the con-
cept projection, resulting in a limitation that the outputs of
these models are unexplainable in the predictions of the
metaphoricity labels. In this work, we propose the first ex-
plainable metaphor identification model, inspired by Concep-
tual Metaphor Theory. The model is based on statistic learn-
ing, a lexical resource, and a novel reward mechanism. Our
model can identify the metaphoricity on the word-pair level,
and explain the predicted metaphoricity labels via learned
concept mappings. The use of the reward mechanism allows
the model to learn the optimal concept mappings without
knowing their true labels. Our method is also applicable for
the concepts that are out of training domains by using the lex-
ical resource. The automatically generated concept mappings
demonstrate the implicit human thoughts in metaphoric ex-
pressions. Our experiments show the effectiveness of the pro-
posed model in metaphor identification, and concept mapping
tasks, respectively.

Introduction
Metaphor is a special linguistic phenomenon, using one
or several words to modify a target concept that is differ-
ent from the source concept. Lakoff and Johnson (1980)
proposed a Conceptual Metaphor Theory (CMT), arguing
that metaphorical expressions are the linguistic surface re-
alization of metaphorical concepts in human cognitive sys-
tems, reflecting human thoughts and behaviors. They ex-
plained the cognitive mechanisms of metaphors in the form
of the mapping of concepts between source and target do-
mains, e.g., given “you are wasting1 my time”, “wasting”
is metaphoric, because conceptually, TIME IS MONEY2 in
the context (Lakoff and Johnson 1980). The source concept
MONEY and the target concept TIME are domain-different.
The metaphoric expression frames TIME in the MONEY
shape, associating with precious and scarce attributes.

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Italics are metaphors.
2Capitalization represents concepts and mappings.

Thus, the studying of concept mapping mechanisms helps
infer the implicit meanings and imageabilities of metaphor-
ical expressions. Furthermore, the conceptualization and
mapping also explain why a word is metaphoric with a gen-
eral description, e.g., TIME IS MONEY also explains the
metaphoricity of “your help will save me days” and “I have
invested many months in the project” and, hence, also en-
ables intention mining (Howard and Cambria 2013). Based
on CMT, Lakoff, Espenson, and Schwartz (1991) compiled
a Master Metaphor List to categorize common concepts and
mappings with great labor efforts. However, Shutova and Si-
mone (2010) argued that the abstractness level of the listed
concept agents (e.g., TIME and MONEY) was hardly con-
trolled, because of the subjectivity of annotators. Addition-
ally, the listed concept agents failed to represent the whole
spectrum of metaphoric expressions, resulting in the fact
that the list was rarely used in the computational metaphor
community. Finally, current deep learning-based metaphor
detection methods are unexplainable, because these meth-
ods (Gao et al. 2018; Su et al. 2020) can simply yield the
metaphoricity labels for individual tokens. Our motivation
is to propose an automatic method to mitigate the labor
efforts and the subjective issues in conceptualization; We
project concept agents to WordNet (Fellbaum 1998) to gain
a broader spectrum and a unified conceptualization criterion
for concept generations.

Given a pair of dependent words, “clean datum”, our
model identifies the word pair as metaphoric, and generating
source and target concepts in natural language, e.g., INFOR-
MATION IS MATERIAL. We do not have a very large corpus,
containing all metaphoric concepts for the supervised learn-
ing. To abstract appropriate concept agents that promote the
accuracy of the metaphor identification, we propose a novel
dynamic reward mechanism. The reward mechanism allows
the model to identify an efficient concept without knowing
the true label of the concept. An accurate metaphoricity la-
bel prediction will reward the associated source and target
concept predictions. Thus, the reward mechanism can push
the model to yield more accurate metaphor identifications
and effective concept generations. Due to the absence of
word pair datasets in other Parts-of-Speech (PoS), we focus
on verb-noun and adjective-noun metaphor identification,
which is in line with Shutova, Sun, and Korhonen (2010);
Shutova, Kiela, and Maillard (2016) and Rei et al. (2017).
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In this work, we first demonstrate that our model outper-
forms previous baselines in word pair-level metaphor identi-
fication, yielding an average gain of 3.1% F1 scores on two
publicly available datasets (Mohammad, Shutova, and Tur-
ney 2016; Tsvetkov et al. 2014). In the automatic evalua-
tion of source and target concept generations, we observe
10.1% gains in F1 over the baseline with random concepts,
based on a vanilla RoBERTa classifier (Liu et al. 2019) and
a dataset (Gutierrez et al. 2016) from a different domain.
Finally, the human evaluation results demonstrate that our
method achieves 63.7% average accuracy over three datasets
in the concept mapping evaluation task, 70.7% accuracy in
the source concept generation task, and 87.3% accuracy in
the target concept generation task.

The contribution of this work is twofold: (1) We propose
a novel method for explainable metaphor identification. The
model is informed by CMT, identifying metaphoricity, and
generating source and target concepts for metaphoric word
pairs. (2) We demonstrate that our method achieves state-
of-the-art performance in word pair metaphor identification.
The concept mapping evaluation tasks also show that our
model is more accurate than the baselines.

Related Work
Metaphor identification is a widely studied task in metaphor
processing, focusing on detecting metaphors on token-level
(Stowe et al. 2019; Mao, Lin, and Guerin 2019; Su et al.
2020; Mao and Li 2021; Choi et al. 2021), relation-level (Za-
yed, McCrae, and Buitelaar 2020), word pair-level (Shutova,
Kiela, and Maillard 2016; Rei et al. 2017), and sentence-
level (Birke and Sarkar 2006; Heintz et al. 2013). Cur-
rently, sequence-tagging models have achieved significant
improvements in linguistic metaphor detection (Leong, Kle-
banov, and Shutova 2018; Leong et al. 2020). However,
these models fail to explain the conceptual mapping mech-
anism of source and target domains of a metaphoric expres-
sion. Investigating the concept mapping mechanisms helps
us understand the implicit imageability of a metaphor.

Recent conceptual metaphor processing methods tar-
geted to map source and target word clusters (Mason
2004; Shutova et al. 2017). These methods used word co-
occurrence features, and traditional clustering algorithms to
identify the metaphoricity of word pairs. However, these
methods cannot automatically conceptualize the clusters,
generating abstract concept agents in natural language to
represent the clusters. There is still a one-step gap to the
real-world applications by linguistic learners.

In theoretical studies, Lakoff and Johnson (1980) pro-
posed CMT to explain the concept mapping mechanisms of
metaphors. Scholars summarized and generated a list of con-
cept mappings, namely Master Metaphor List (Lakoff, Es-
penson, and Schwartz 1991). In the list, the concepts were
abstracted, grouped, and categorized, according to large-
scale corpus studies. However, the listed concepts are not
enough for representing all the metaphorical concepts in ev-
eryday life (Shutova and Simone 2010), resulting in the fact
that these concept mapping instances were rarely used in the
computational metaphor processing community.
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Figure 1: The framework of our model. (a) Common associ-
ation acquisition. (b) Conceptualization. (c) Metaphor iden-
tification and concept generation. w is an input word. s and t
denote source and target domains, respectively. asm denotes
one of the top N most frequent associations of ws in the de-
pendency of the word pair (ws, wt) in a Wikipedia dump.
Cs = {cs1, ..., csm, ..., csN} is a set of source candidate con-
cept agents, given by WordNet (WN ) and a statistical algo-
rithm. ct is a generated target concept. h is a hidden state,
given by a RoBERTa encoder. l is the metaphoricity label of
a word pair (ws, wt) input. ⊗ denotes scalar multiplication.
⊕ denotes concatenation. In Figure (c), a solid line denotes
forward propagation; a dashed line is backward propagation.

Using considerable human labor to develop such a list
also signifies the importance of automatically generating ab-
stract concepts in natural language, and mapping source and
target domains for the community. We mean to propose an
explainable model to detect metaphors, automatically gener-
ating concepts to represent source and target domains with a
broad spectrum.

Methodology
Our model inputs are dependent word pairs, either verb-
noun (in a subject-verb or a verb-direct object dependency
relationship) or adjective-noun. The noun part is literal,
while the verb and adjective parts are either literal or
metaphoric. The output label indicates the metaphoricity of
a word pair (metaphor or literal). We define the nouns as the
words (wt) for inferring target concepts; the verbs and adjec-
tives are the words (ws) for inferring source concepts. Our
model (Fig. 1) employs three technical parts to address the
issue that current conceptual metaphor corpora cannot cover
the whole concept spectrum.
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First, we acquire the N most frequent noun associations
([as1, ..., a

s
m, ..., a

s
N ]) of ws in the same dependency of the

word pair (ws, wt) from a Wikipedia dump3. Next, as and
wt are conceptualized with WordNet and a statistical knee
point algorithm (Satopaa et al. 2011). The abstract concept
(csm) of asm is a source candidate concept, where csm ∈ Cs.
The abstract concept of wt is the generated target concept
(ct). Projecting a word to a concept in WordNet allows us to
handle unseen concepts after training. Finally, the multitask
learning (MTL) model learns metaphor detection and con-
ceptualization jointly with a reward mechanism to generate
target and optimal source concepts.

Common Association Acquisition
By observing the examples given by Lakoff and Johnson
(1980), we find a common conceptualization pattern in ver-
bal and adjective metaphors. The target concept agents are
represented as the abstraction of the dependent nouns of
metaphors. The source concepts are likely represented as
the abstraction of the common literal noun associations
of metaphors, e.g., “half-baked ideas”, and “swallow that
claim” are categorized as IDEAS ARE FOOD, where tar-
get IDEAS is the conceptualization of “ideas” and “claim”;
source FOOD is the conceptualization of the common literal
noun associations of “half-baked” and “swallow” (bread).

This is not the only pattern of source conceptualizations.
Lakoff and Johnson also abstracted source concepts from the
metaphoric words, e.g., they conceptualized “I demolished
his argument” as ARGUMENT IS WAR, while WAR is the ab-
stract concept of “demolished”, rather than its coherent lit-
eral associations (“demolish a war” is incoherent literally).
We believe that the inconsistency is due to the subjective
imageability of annotators because one can also abstract the
concept as ARGUMENT IS BUILDING (“demolish a building”
is coherent). The different imageabilities result in rich cogni-
tion about ARGUMENT, e.g., structure (BUILDING) and strat-
egy (WAR). Here, we simplify the source conceptualization
method by using common noun associations of metaphoric
words to demonstrate our model with fewer variations.

A Wikipedia dump is parsed with Stanford Core NLP
(Manning et al. 2014) to acquire common noun associa-
tions for metaphoric verbs and adjectives. We hypothesize
that the frequent noun associations are likely literal, be-
cause according to relevant statistics, a third of sentences in
typical corpora contain metaphorical expressions (Cameron
2003; Martin 2006; Steen et al. 2010; Shutova 2015). We
use Wikipedia as the corpus for the frequency statistics, be-
cause scientific articles likely use literal expressions (Mao,
Lin, and Guerin 2018). We count the frequency of each co-
occurring word in Wikipedia, given ws and the dependency
of the word pair (ws, wt). Top N (a hyperparameter) most
frequent associations (asm, where m ∈ [1, 2, ..., N ]) of ws

are collected for inferring the source candidate concepts.

Conceptualization
Next, we generate the source candidate concept (csm) for asm
and the target concept (ct) forwt. Both asm andwt are nouns.

3https://dumps.wikimedia.org/enwiki/

(10, 1.00)entity.n.01 (8, 1.00) (9, 1.00)

(9, 0.90)physical_entity.n.01 (7, 0.88) (8, 0.89)

(8, 0.80)object.n.01 (6, 0.75) (7, 0.78)

(7, 0.70)whole.n.02 (5, 0.63) (6, 0.67)

(6, 0.60)artifact.n.01 (4, 0.50) (5, 0.56)

(1, 0.10)motor_vehicle.n.01

(2, 0.20)self-propelled_vehicle.n.01 (1, 0.11)compartment.n.02

(3, 0.30)wheeled_vehicle.n.01 (1, 0.13) (2, 0.22)room.n.01

(4, 0.40)container.n.01 (2, 0.25) (3, 0.33)area.n.05

(5, 0.50)instrumentality.n.03 (3, 0.38) (4, 0.44)structure.n.01

Hypernym path 1 Hypernym path 2 Hypernym path 3

Figure 2: The rating scores of hypernyms of “car” in separate
paths. The nodes in the same box denote the same synset in
WordNet. The numbers in the parentheses besides a node
denote the index of a node in a hypernym path (left), and the
rating score in the path (right), respectively.

We defined a concept as an agent that represents the abstract
meaning of a group of words. We use WordNet for concep-
tualization because it covers a wide range of concepts in the
real world. Words are grouped (e.g., synonymy) and hierar-
chically structured (e.g., hypernym and hyponymy) by con-
cepts in WordNet (Fellbaum 1998). A hypernym represents
a broad meaning of specific words that fall under it, e.g.,
“furniture” is the hypernym of “bed” and “table”. Thus, hy-
pernyms are eligible candidate concept agents.

There are three steps in the conceptualization procedure:
(1) Obtain all WordNet hypernyms of a noun; (2) Rate the
hypernyms with their abstract levels and the sense cover-
age significance; (3) Use the knee algorithm (Satopaa et al.
2011) and the hypernym rating scores to select an appropri-
ate hypernym as a concept agent to represent the noun.
(1) By using the NLTK (Bird, Klein, and Loper 2009)
Python package, we can obtain different paths from the node
of a noun to the root node “entity” in WordNet. The nodes
on the paths are hypernyms with different abstract levels (the
higher the more abstract, the lower the more concrete). Dif-
ferent paths represent different senses of the noun. The paths
will meet at a point and coincide if this point can summa-
rize the meanings of all the hypernyms below. We define the
set of all hypernyms of a noun as Snoun. We mean to se-
lect an appropriate hypernym from Snoun, representing the
common sense of the noun as the concept agent, and keep-
ing the selected hypernym concrete, e.g., “car” has three hy-
pernym paths in Fig. 2: Path 1 denotes the sense of “a mo-
tor vehicle with four wheels”; Path 2 denotes “a wheeled
vehicle adapted to the rails of railroad”; Path 3 denotes
“the compartment that is suspended from an airship and
that carries personnel and the cargo and the power plant”.
Scar = {“motor vehicle”, “self-propelled vehicle”, “com-
partment”, “wheeled vehicle”, “room”, “container”, “area”,
“instrumentality”, “structure”, “artifact”, “whole”, “object”,
“physical entity”, “entity”}.
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Figure 3: The rating score curve of hypernyms of “car” with-
out smoothing and normalization.

(2) We rate the hypernyms to quantify their representations,
according to their indices (i) and the coverage of different
hypernym paths (j) of a noun. The index of the direct hyper-
nym of a noun is 1 in each hypernym path. The index of the
root node is the length of the path. The rating score (Θ) of a
hypernym (hyper) is given by

Θhyper =
∑
j

ihyperj

lenj
, (1)

where, lenj is the length of Path j that contains the hy-
pernym, e.g., the lengths of Paths 1 and 2 are 10 and 8 in
Fig. 2, where the indices of “container” are 4 and 2. Thus,
Θcontainer = 4/10 + 2/8 = 0.65.

A larger Θ means that the hypernym is more abstract, and
covering more hypernym paths (senses) of a noun.
(3) We employ the knee algorithm (Satopaa et al. 2011)
(K(·)) to balance the concreteness and sense coverage of a
hypernym selection. A knee point is the point of the max-
imum curvature of a continuous function. K(·) has em-
bedded smooth and normalization functions to handle dis-
crete data, e.g., Θhyper. Then, the knee point is knee =
K(Θhyper).

The knee point represents an approximate hypernym. A
hypernym with a lower Θ than the knee hypernym does
not dramatically improve the concreteness level because its
slope is flat on the curve (see an example later). In contrast,
the hypernym with a lower Θ may lose the significance in
covering the common senses of a noun. In practice, we do
not directly use the knee as the selected hypernym because
the concreteness can be further improved without losing the
sense coverage. If a hypernym with a lower rating score
(Θhyper) covers the same number of hypernym paths as the
knee point, it is as significant as the knee point in the sense
coverage dimension, while it is more concrete than the knee
point. We count the number (ohyper) of paths that include a
given hypernym, and defining a set (Dknee) where all ohyper
in the set are equal to oknee. Then, the hypernym that is se-
lected as the concept agent (c) of a noun is given by

c = hyper∗ = arg min
hyper∈Dknee

Θhyper. (2)

For example, in Fig. 3, the knee of “car” is “container”.
It covers two hypernym paths (o = 2, see Fig. 2). The slope

before “container” is flat. “wheeled vehicle” (hyper∗; cov-
ering two paths; more concrete) is defined as the concept
agent (c) of “car”, because its rating score (Θ) is the lowest
among all hypernyms that distribute in two hypernym paths.

Metaphor Identification and Concept Generation
We have obtained the target concept agent (ct) from wt and
source candidate concept agents (Cs = {cs1, ..., csm, ..., csN})
from the most frequent associations (asm) of ws. We mean
to generate an optimal source concept from Cs and identify
the metaphoricity of the word pair (ws, wt). To gain a broad
concept spectrum, our model concept label vocabulary in-
cludes all WordNet nouns. Due to the absence of source gold
labels, we employ a dynamic reward mechanism to push the
learned concepts towards more accurate metaphoricity pre-
dictions. During training, given an input (ws, wt), we first
pair csm and ct based on a stochastic policy, where csm ∈ Cs.
The model learns csm, c

t, and the metaphoricity label l, si-
multaneously, based on RoBERTa and MTL. Given input
ws and wt, RoBERTa hidden states (h) are given by

hs, ht = RoBERTa(< s >,ws, wt, < /s >), (3)

where < s > and < /s > are special tokens, defined by
RoBERTa; hs is the RoBERTa hidden state, corresponding
to ws; ht corresponds to wt. The predicted probability dis-
tributions (P ) of csm, ct, and l are given by

P (ĉsm) = softmax(W shs + bs), (4)

P (ĉt) = softmax(W tht + bt), (5)

P (l̂) = softmax(W l(hs ⊕ ht) + bl), (6)

where W and b are learned parameters. ⊕ is concatenation.
An accurate label prediction, higher P (l̂ = l) yields a

higher reward to the losses of the concept predictions in
E.q. 10, where the reward (the coefficient of the losses) is

β = ϕP (l̂ = l)2 + γµ. (7)

ϕ and γ are hyperparameters for balancing the losses of the
label, source, and target concepts during training. µ is{

µ = sim(csm, c
t), if literal;

µ = 1− sim(csm, c
t), otherwise.

(8)

We mean to force the predicted source and target con-
cepts more similar in literals, and more distinguishable in
metaphors by µ. We use Wu-Palmer similarity (Wu and
Palmer 1994). The similarity sim(·) is measured by

sim(csm, c
t) =

2 ∗Nlcs→root

Ncsm→lcs +Nct→lcs + 2 ∗Nlcs→root
. (9)

lcs (least common subsumer) is the most specific ancestor
concept, shared by two sub-concepts in WordNet (Pedersen
et al. 2004). Nlcs→root is the number of nodes on the path
from the lcs of csm and ct to the root;Ncsm→lcs is the number
of nodes from csm to lcs; Nct→lcs is the number of nodes
from ct to lcs. sim(csm, c

t) is between 0 and 1.
We employ cross-entropy loss for the learning of each

subtask (Ll,Ls,Lt). The overall loss (L) is given by

L = Ll + βLs + βLt. (10)
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Dataset # WP % M % L # UM
MOH 647 45.4 54.6 215
TSV-train 1455 47.8 52.2 28
TSV-dev 200 40.0 60.0 27
TSV-test 200 50.0 50.0 25
TSV-all 1855 47.2 52.7 28
GUT-train 6015 53.6 46.4 23
GUT-dev 859 53.4 46.6 23
GUT-test 1718 53.3 46.7 23
GUT-all 8592 53.6 46.4 23

Table 1: Dataset statistics. # WP denotes the number of
word pairs. % M and % L are the percentage of metaphoric
and literal word pairs among all word pairs, respectively. #
UM is the number of unique metaphoric verbs or adjectives.

E.q.7-10 are applicable in the training procedure. In the
inference procedure, the prediction of a source concept (cs∗)
is conditioned on the source candidate concept set (Cs) by

cs∗ = arg max
ĉsm∈Cs

P (ĉsm). (11)

The target concept prediction (ct) is given by wt and the
conceptualization algorithm in the previous subsection. The
metaphoricity label prediction (l∗) is given by

l∗ = arg max
l̂∈{meta.,lite.}

P (l̂). (12)

Experiments and Results
Baselines
Multimodal Shutova, Kiela, and Maillard (2016) proposed
a word pair metaphor detection model with a multimodal
learning method, incorporating word embeddings, visual
embedding features, and a vector space similarity measure.
SSN Rei et al. (2017) proposed a supervised similarity net-
work, learning the cosine similarity patterns of metaphors
with a gating mechanism and weighted cosine. The model
incorporated different features, e.g., skip-gram and attribute-
based vectors. We report the performance with the optimal
feature setups (skip-gram for MOH and the fusion of two
vectors for TSV).

Datasets
MOH Shutova, Kiela, and Maillard (2016) developed a
verb-noun pair dataset, parsed from the collection of Mo-
hammad, Shutova, and Turney (2016). The dependent rela-
tionships between verb-noun pairs are either verb-subject or
verb-direct object. We conduct 10-fold cross-validation with
the MOH dataset for benchmarking.
TSV (Tsvetkov et al. 2014) is an adjective-noun pair dataset.
We randomly sample 200 word pairs from the original train-
ing set as the development set.
GUT (Gutierrez et al. 2016) is an adjective-noun pair
dataset. Compared with MOH and TSV, an adjective has
more different noun associations in GUT. 72.5% words and
98.4% word pairs in GUT never appear in MOH and TSV.
GUT is used for testing out-of-domain concept generations.

The detailed statistics are shown in Table 1.

Dataset Model P R F1 Acc

MOH
Multimodal 65 87 75 -

SSN skip-gram 73.6 76.1 74.2 74.8
Ours 72.5 79.3 75.6* 75.9

TSV
Multimodal 67 96 79 -
SSN fusion 90.3 73.8 81.1 82.9

Ours 89.4 84.0 86.6* 87.0

Table 2: Metaphor identification results, measured by F1
score. * denotes the improvement is statistically significant,
based on a two-tailed t-test (p < 0.01).

Setups
The batch size for training MOH is 256, while the batch
size for training TSV, GUT, and the combination of MOH
and TSV is 1284. We train the model with 40 epochs5.
The reported testing results and 10-fold cross-validation re-
sults are based on the model that achieves the highest F1
score on the development sets. The model depends on Cuda
9.2 (NVIDIA, Vingelmann, and Fitzek 2020), Pytoch 1.7.1
(Paszke et al. 2019), and optimized with Adam optimizer
(Kingma and Ba 2014) and a learning rate of 1e-5. We use
RoBERTa-large as the encoder with a dropout rate of 0.3. In
the common association acquisition procedure, we employ
the 3 most frequent associations of a verb or an adjective in
the Wikipedia dump. ϕ and γ in E.q. 7 are 0.05 and 0.005
respectively for balancing the losses between subtasks. If an
input word is tokenized as Byte-Pair pieces (Sennrich, Had-
dow, and Birch 2016) by RoBERTa, we use the first token as
input to represent the original word.

Metaphor Identification Evaluation
As seen in Table 2, our model exceeds the strongest base-
lines by 3.1% F1 (metaphors are positive labels) on average
over the two datasets, where the TSV dataset (5.5%) yields
higher gains than MOH (0.6%). This is because the size of
TSV is larger than that of MOH. Our method learns more
auxiliary conceptual information based on a larger dataset,
thus yielding higher improvements on the main task.

There are three setups in our ablation analysis: (1) w/o
MTL is a vanilla RoBERTa classification model without
concept mapping MTL (the learnings of csm and ct in Fig. 1c
are excluded); (2) w/o LB is the MTL model that excludes
the loss balancing (β = 1 in E.q. 10). (3) w/o DRW is
the MTL model that excludes the dynamic reward mecha-
nism, where we set up a fixed weight (β = 0.1 in E.q. 10)
to balance the subtask losses. We run the experiments on
three datasets, MOH (10-fold), TSV development set, and
TSV testing set, respectively. As seen in Table 3, our model
(84.1%) achieves 6.4% average F1 gains, compared with the
vanilla RoBERTa model (w/o MTL) (77.7%).

4We mean to use a larger batch size to improve the model per-
formance (Liu et al. 2019). However, apart from MOH, 256 batch
size runs out of memory on the other datasets, based on our em-
ployed model and GeForce GTX 1080 Ti GPU.

5This is because the model can converge in the metaphor detec-
tion task before 40 epochs
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Setup MOH TSV-dev TSV-test Avg
F1 Acc F1 Acc F1 Acc F1

w/o MTL 73.6 74.4 85.5 89.0 74.1 78.0 77.7
w/o LB 70.8 72.4 80.5 84.0 77.5 80.5 76.3

w/o DRW 73.9 75.4 88.1 90.1 79.6 81.2 80.5
Ours 75.6 75.9 90.2 92.0 86.6 87.0 84.1

Table 3: Ablation analysis.

This shows that the auxiliary concept learning task and
the dynamic reward mechanism are supportive of metaphor
identification. This is because the model prediction simu-
lates the decision mechanism of human metaphor detection,
predicting the metaphoricity label, based on the source and
target hidden states (hs and ht in Fig. 1c). Conversely, with-
out the dynamic reward mechanism and loss balancing, the
model (w/o LB vs. ours) shows a sharp drop in the average
F1 score (-7.8%). This is because the learning of concepts
is much more difficult than the learning of metaphoricity la-
bels. Without balancing the losses, the model may be ru-
ined by the concept learning. w/o DRW surpasses w/o MTL
by 2.8% F1 on average. This shows the effectiveness of in-
troducing the concept learning auxiliary task and balancing
losses between subtasks. Finally, the full model yields 3.6%
gains, compared with w/o DRW, which signifies the utility
of the proposed dynamic reward mechanism.

Concept Mapping Automatic Evaluation
We test the generated source and target concept agents
as features for word pair metaphor detection. A different
dataset is employed to evaluate out-of-domain concepts. The
testing model is based on a typical RoBERTa-large sequence
classification model. The input is two generated concepts of
a given word pair. The object is to classify the metaphoricity,
based on concepts. To the best of our knowledge, we are un-
able to find an appropriate external baseline, functioned with
source and target concept generations for benchmarking.

We use the conceptualization algorithm and the pre-
trained model (a concept generator) that was trained on the
combination of the MOH and TSV training sets to generate
concepts for word pairs in the GUT. We employ an early
stop. The model stops training when the accuracy of the
metaphor identification task reaches 100% on the training
set, because the rate of reward starts to be less distinctive.
The baseline model (rand-candidate) is based on generated
target concepts and randomly selected source concepts from
the source candidate sets (Cs in Fig. 1b). We also include the
baseline model (rand-concept) whose input is randomly se-
lected WordNet hypernyms of target words and the frequent
associations of source words. The knee point selection algo-
rithm is excluded in rand-concept. Then, the concept agent
of “car”, e.g., can be any hypernym in Fig. 3. All the above-
mentioned methods are ultimately compared to the model
(original) that is trained with the original word pairs. We
maintain the concept consistency of the rand-candidate and
rand-concept inputs (a word is represented as a fixed con-
cept). We report the RoBERTa model performance on the
testing set with different inputs in Table 4.

Setup P R F1 Acc ∆ F1
Original 98.0 97.9 98.0 97.9 -

Rand-concept 79.8 85.2 82.4 80.6 -15.6
Rand-candidate 90.6 93.1 91.8 91.2 -6.1

Ours 91.3 93.7 92.5 91.9 -5.5

Table 4: Automatic evaluation for concept mappings, based
on GUT testing dataset.

As seen in Table 4, the benchmark model (original)
achieves a very accurate result (98.0% F1) in metaphor iden-
tification. This is because an adjective has a large number of
different noun associations to learn the metaphoricity (see
Table 1). Our generated concept inputs yield a marginal loss
(∆ = −5.5% F1), compared with the original word pairs,
due to the errors of the concept generator. Using concept
training and testing sets from different domains improves
the difficulty of the task. Nevertheless, the classifier with
our generated concepts still yields acceptable predictions
(92.5% F1). The gap between the randomly selected candi-
date concept (rand-candidate) and the original word pair in-
put increases slightly (∆ = −6.1% F1). However, it is still
within the acceptable range. This shows that the statistical
knee algorithm-based target and source candidate concep-
tualizations (see Figures 1a and 1b) are qualified features
in machine learning. The MTL procedure (Fig. 1c) further
improves the quality of the generated concepts. Without the
MTL and conceptualization algorithms, we observe a sharp
drop in the rand-concept baseline (∆ = −15.6% F1). Even
though the random concepts are also the hypernyms of the
input word pairs, the MTL and conceptualization algorithms
can generate more robust concepts, yielding 10.1% gains.

Hyperparameter Analysis
We evaluate the number of the most frequent associations
that was manually defined in the section of common asso-
ciation acquisition. We test the hyperparameter by using the
MOH 10-fold cross-validation and TSV development sets
(the metaphor detection task), and the GUT development set
(the concept feature evaluation task6). As seen in Table 5, the
top 3 most frequent associations of the source word tend to
yield the optimal results. For other values (N < 3), the per-
formance decreases, because the candidate source concepts
cannot be effectively covered by the source word associa-
tions; Alternatively (N > 3), more association words may
introduce additional noise for the source concept learning.

Concept Mapping Human Evaluation
Next, we invite three participants to evaluate the generated
concept mappings of metaphoric word pairs. The partici-
pants are psycho-linguistic research students whose mother
language is English. We develop a test set by randomly se-
lecting 100 metaphoric word pairs from MOH, TSV, and
GUT testing sets, repetitively (totally, 300).

6We train different concept generators (see the section of con-
cept mapping automatic evaluation) with different numbers of the
most frequent associations to align to the downstream evaluation.
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Task # freq. assoc.
1 2 3 4 5

MOH 71.3 72.8 75.6 74.9 72.1
TSV 82.2 89.2 90.2 88.8 88.7
GUT 91.3 91.6 91.6 91.2 90.7
Avg 81.6 84.5 85.8 84.8 83.8

Table 5: Hyperparameter analysis, measured by F1. # freq.
assoc. denotes the number of the most frequent associations.

The baseline (rand-candidate) yields randomly selected
concepts from the source candidate set (Cs) for benchmark-
ing. The target concept is the same between the two models.
We evaluate the accuracy of a concept mapping with two
questions. Given a word pair (a metaphoric verb or adjec-
tive, associated with a literal noun), their dependency, and
a source target concept pair, the questions are: Q1. Whether
the noun is conceptually mapped to the source concept? Q2.
Whether the basic meaning of the noun belongs to the target
concept? Annotators are encouraged to answer the questions
with contexts, e.g., given “son drift” in subject-verb depen-
dency, whether “son” is conceptually mapped to the source
concept VESSEL? Whether the basic meaning of “son” be-
longs to the target concept MALE OFFSPRING? An exam-
ple sentence for your reference is “my son drifted around
for years in California before going to law school” (Fell-
baum 1998). The final annotation of each question is agreed
upon by at least two annotators (more than half). We use
Cohen (1960)’s kappa (κ) as an agreement measure, where
κsource = 0.87 and κtarget = 0.89. The performance is
measured by accuracy (the number of correct concept gener-
ations above the total number of cases). An accurate concept
mapping means that both the source and target concepts (Q1
and Q2) are correct. As seen in Table 6, both our method
and the rand-candidate baseline yield positive results in the
source (70.7% vs. 67.3%) and target (87.3%) concept gen-
eration, and concept mapping (63.7% vs. 59.3%) evaluation
tasks overall. It supports the automatic evaluation results in
Table 4. We observe that the accuracy of source concept gen-
erations is often lower than the target, because the source
concepts are indirectly inferred from the frequent associa-
tions (see the section of common association acquisition).
However, the accurate target concept generations (above
84% across the three datasets) demonstrate the effectiveness
of our conceptualization method.

Case Study
Some concept mapping examples can be viewed in Table 7.
The model generates the concept mapping DOCUMENT IS
WAY for “steamroller bill” (M1). It explains the metaphoric-
ity of steamroller because “bill” (DOCUMENT) maps to a
different concept domain (WAY) in a context that contains
the word pair, such as “the Senator steamrollered the bill to
defeat” (Fellbaum 1998). Our method shows the implicit im-
ageabilities of “steamroller” and “bill” that are not directly
presented in the sentence. Another example is that “steep
discount” (T5, DECREASE IS GEOLOGICAL FORMATION)
is metaphoric because DECREASE (target) and GEOLOGI-

Dataset Method Source
(Q1)

Target
(Q2)

Mapping
(Q1 & Q2)

MOH Rand-candidate 62.0 86.0 56.0
Ours 67.0 86.0 62.0

TSV Rand-candidate 66.0 92.0 63.0
Ours 69.0 92.0 67.0

GUT Rand-candidate 74.0 84.0 59.0
Ours 76.0 84.0 62.0

All Rand-candidate 67.3 87.3 59.3
Ours 70.7 87.3 63.7

Table 6: Human evaluation for concept generations and con-
cept mappings, measured by accuracy.

Word pair DR Target Source
M1 steamroller bill vo DOCUMENT WAY
M2 son drift sv MALE OFFSP. VESSEL
M3 wine breathe sv ALCOHOL ADULT
M4 story lend sv FICTION ADULT
M5 government bow sv POLITY ADULT
T1 blind alley an STREET ADULT
T2 raw emotion an FEELING ARTIFACT
T3 weak password an POSITIVE ID. ARTIFACT
T4 rough draft an WRITING ARTIFACT
T5 steep discount an DECREASE GEO. FORM.
G1 bitter night an TIME PERIOD SENSATION
G2 sour trade an TRANSACTION SENSATION
G3 clear definition an EXPLANATION MATERIAL
G4 warm gratitude an FEELING MATERIAL
G5 clean datum an INFORMATION MATERIAL

Table 7: Case study. M, T, and G are MOH, TSV, and GUT
datasets. DR denotes dependency relationship, where sv, vo,
and an are subjective-verb, verb-direct object, and adjective-
noun dependencies, respectively.

CAL FORMATION (source) are from two different concept
domains. Additionally, as seen in the source column in Ta-
ble 7, the word pairs are categorized by their abstract source
concepts, e.g., “wine breathe”, “story lend”, “government
bow” and “blind alley” can be categorized by the ADULT
source concept. Both “bitter night” and “sour trade” map to
the same SENSATION source concept.

Conclusion
In this work, we propose a word pair-level metaphor iden-
tification method. The method can identify the metaphoric-
ity and generate source and target concepts in natural lan-
guage for a dependent word pair input. Such an approach
allows the metaphor identification output to be explainable
in Conceptual Metaphor Theory. We demonstrate that the
model yields better performance than previous word pair-
level metaphor identification baselines.

In addition, we show the utility of the generated concepts
with automatic and human evaluation tasks and a dataset that
contains out-of-domain concepts. The generated source and
target concepts are categorized and structured in line with
WordNet. Thus, our model can be a useful tool for support-
ing conceptual metaphor corpus study in future work.
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