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A B S T R A C T

Multimodal fusion has the potential to significantly enhance model performance in the domain of Emotion
Recognition in Conversations (ERC) by efficiently integrating information from diverse modalities. However,
existing methods face challenges as they directly integrate information from different modalities, making it
difficult to assess the individual impact of each modality during training and to capture nuanced fusion. To
deal with it, we propose a novel framework named Fusing Pairwise Modalities for ERC. In this proposed
method, the pairwise fusion technique is incorporated into multimodal fusion to enhance model performance,
which enables each modality to contribute unique information, thereby facilitating a more comprehensive
understanding of the emotional context. Additionally, a designed density loss is applied to characterise fused
feature density, with a specific focus on mitigating redundancy in pairwise fusion methods. The density loss
penalises feature density during training, contributing to a more efficient and effective fusion process. To
validate the proposed framework, we conduct comprehensive experiments on two benchmark datasets, namely
IEMOCAP and MELD. The results demonstrate the superior performance of our approach compared to state-
of-the-art methods, indicating its effectiveness in addressing challenges related to multimodal fusion in the
context of ERC.
. Introduction

Emotion Recognition in Conversations (ERC) represents a
pecialised subfield within emotion recognition, specifically dedicated
o the discernment and interpretation of emotions expressed during
erbal exchanges. ERC emphasises on the intricate interplay of various
odalities within the conversational context, which including spoken

anguage, facial expressions, body language, and potentially exchanged
extual information during dialogues. The utilisation of multimodal
usion techniques can serve to enhance the effectiveness for model
erformance, which is proved across diverse applications [1–6].

Consequently, multimodal fusion emerges as a critical component
n the ERC domain, involving the amalgamation of information from
iverse sources or modalities, such as facial expressions, spoken lan-
uage, and textual information, which can utilise varied cues to attain a
ore nuanced understanding of emotional expression in conversational

nteractions. Generally, existing multimodal fusion methods can be
ategorised into two types: model-independent methods and model-
ased methods. Model-independent methods include early fusion, late
usion, intermediate fusion, and hybrid fusion.
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E. Cambria).

Early fusion integrates raw data from different modalities for sub-
sequent feature extraction and classification [7,8]. Late fusion trains
each modal data separately, obtaining prediction results, and fuses the
multiple models in the later stage using decision-making or ensemble
methods [9]. Intermediate fusion transforms different modal data into
high-dimensional features, and fuse them at the intermediate layer
of the model [9,10]. Hybrid fusion performs early fusion on modal-
ities with weak correlation and data synchronisation, and also takes
late fusion on modalities with strong correlation and different data
updates [11,12]. However, model-independent methods often struggle
to effectively capture interactions among different modalities, lead-
ing to the development of model-based multimodal fusion methods
that leverage relationships between modalities to capitalise on model
advantages.

Model-based methods, in turn, consist of traditional methods and
deep learning-based methods. Traditional methods include multiple
kernel learning and graphical model-based methods. Multiple kernel
learning methods take a combination of basic kernels to replace a single
kernel, transforming the kernel selection problem into one of selecting
combination coefficients.
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Fig. 1. The difference between the existing deep learning-based and our proposed
approaches. (a) The GNNs represent different modalities directly as a graph, which
proficiently capture distant contextual information. (b) The RNNs autonomously process
each modality before subsequently combining them, which play a crucial role in tasks
necessitating the integration of temporal multimodal information. (c) Our proposed
work pairs modalities for comprehensive information fusion and then model the fused
information as a graph to obtain the predicted labels.

Graphical model-based methods utilise graph structures to represent
conditional dependencies between random variables, performing mul-
timodal fusion [13–17]. Deep learning-based approaches facilitate end-
to-end training for multimodal representation and fusion components.
These methods demonstrate superior performance when contrasted
with non-neural network-based systems [18,19]. Specifically, the em-
ployed architectures (see Fig. 1) predominantly involve Graph Neural
Networks (GNNs) and Recurrent Neural Networks (RNNs). The GNNs
demonstrate robust capabilities in modelling relationships, exemplified
by methods such as MMGCN and GraphCFC, which proficiently capture
distant contextual information [20,21]. Notably, these GNNs represent
different modalities directly as a graph. Simultaneously, the RNNs
play a crucial role in tasks necessitating the integration of temporal
multimodal information. This involves the utilisation of architectures
such as Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRUs). In this context, RNNs autonomously process each modality
before subsequently combination [22–24].

The existing approaches for multimodal fusion directly integrate in-
formation from different modalities, posing challenges in evaluating the
individual impact of each modality during training and capturing the
nuanced fusion of various modalities. In multimodal fusion, challenges
arise from structural heterogeneity and disparities in the significance
of various modalities, presenting impediments to cohesive integration.
The principal challenges inherent in multimodal fusion pertain to the
direct fusion for different modalities, resulting in information loss and
confusion attributable to variations in characteristics and disparities
in data distribution among modalities. Distinct modalities (including
text, images, or audio) exhibit unique characteristics, thereby com-
plicating the process of reconciling these disparities through direct
fusion. Additionally, direct fusion impedes the capturing of nuanced
2

relationships or alignments between semantic levels across diverse
modalities, consequently leading to the loss of valuable information.

To address this issue, we propose a novel multimodal fusion method
which facilitates comprehensive information integration through the
paired fusion of modalities. Nevertheless, the existence of similar in-
formation across distinct modalities poses a significant obstacle, as
the strategy of pairing modalities for fusion introduces the issue of
modal redundancy. The pairwise fusion approach may result in features
characterised by elevated correlation, thereby introducing duplicated
information and potential redundancies. In instances where modalities
exhibit similarity or correlation in information content, the heightened
correlation among features imparts redundant information pertaining
to the same conceptual or contextual content. The redundancy has the
potential to adversely affect model performance, particularly in tasks
demanding efficient information utilisation.

To achieve comprehensive multimodal fusion and address the chal-
lenges for pairwise information fusion, we undertake the following
initiatives:

(1) The pairwise fusion method is integrated into multimodal fu-
sion to enhance model performance. It discerningly manages rela-
tionships within each modality pair, thereby improving overall fusion
performance. Information fusion from each modality pair heightens
feature diversity, resulting in more enriched and varied feature rep-
resentations, consequently enhancing the model’s data representation
capacity. The integration of data from each modality pair ensures
comprehensive information utilisation, affording each modality the
opportunity to contribute unique information, which facilitates the
model’s comprehensive understanding of the task.

(2) The designed density loss aims to characterise the density of
fused features, focusing on addressing the challenge of feature redun-
dancy inherent in pairwise fusion methods. The designed density loss is
intended to penalise the density of fused features, prompting the model
to systematically alleviate redundancy during training. Additionally,
the incorporation of the density loss incentivises the model to prioritise
the learning of distinctive features and facilitates the integration of
information from diverse modalities, in contrast to a simplistic fusion
of all available features.

The proposed method undergoes evaluation on the task of ERC,
utilising two benchmark datasets: IEMOCAP [25] and MELD [26].
Extensive experiments demonstrate that our approach achieves an av-
erage F1 score approximately 4.01% higher (IEMOCAP) and 6.47%
higher (MELD) than state-of-the-art methods.

The contributions of this work can be summarised as follows:

• An novel pairwise modalities fusion approach for ERC is pro-
posed to optimise the efficiency of multimodal fusion, thereby
enhancing overall model performance. The integration of data
from each modality pair ensures comprehensive information util-
isation, enabling each modality to contribute unique information
and facilitating a more comprehensive understanding. Informa-
tion fusion from each modality pair increases feature diversity,
resulting in enriched and varied feature representations, thereby
enhancing the model’s data representation capacity.

• The density loss is designed and introduced in multimodal fusion
to address concerns related to modality redundancy by constrain-
ing the size of model parameters during training. The formulated
density loss characterises the density of fused features, with a
specific focus on mitigating feature redundancy inherent in pair-
wise fusion methods. This designed density loss is intended to
penalise the density of fused features, which can effectively min-
imise feature redundancy systematically reducing redundancy
during model training. Consequently, the proposed framework
can elevate the efficiency and robustness of multimodal fusion
models.
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• Comprehensive experiments are conducted on the IEMOCAP and
MELD datasets, attest to the superior performance exhibited by
the proposed framework relative to incumbent methods. These re-
sults affirm the efficacy of the framework in effectively addressing
the inherent challenges associated with multimodal fusion.

The remainder of this paper is structured as follows: Section 2
iscusses relevant prior work. In Section 3, we offer a comprehen-
ive description of the proposed model. Section 4 details the dataset
onfigurations and baseline models utilised in our experiments. Sec-
ion 5 presents the experimental results and their analysis. Our work
s concluded in Section 6.

. Related work

The evolution of affective computing has progressed from unimodal
rocessing [27–29] to multimodal processing [21,30–32]. This is be-
ause multimodal fusion can improve performance using the joint
ecognition of information from multiple modalities, fusing comple-
entary information among different modalities, thus making recog-
ition more stable. The existing multimodal fusion methods can be
ivided into two main categories: model-independent fusion methods
nd model-based fusion methods. Model-independent fusion methods
an be further categorised into early fusion, late fusion, hybrid fu-
ion. On the other hand, model-based methods can be segmented into
raditional methods and deep learning-based methods.

.1. Model-independent fusion methods

The model-independent fusion methods do not explicitly rely on
he underlying model architecture for integrating information from
ifferent modalities. The model-independent fusion methods consist of
arly fusion, late fusion, and hybrid fusion.

.1.1. Early fusion
Early fusion involves the extraction of features from different modal-

ties, followed by concatenation of these features into a unified repre-
entation, which is subsequently utilised for emotion prediction. [1,23]
tilise early fusion by concatenating features from diverse modalities
or emotion prediction. Such a method may face challenges in capturing
uanced contextual relationships between modalities. [12] takes early
usion to combine features from audio, video, and text modalities,
enerating fused features. Subsequently, a hierarchical fusion Graph
onvolutional Networks (GCN) is applied to perform feature fusion and

acilitate emotion recognition. Thus, the early fusion methods combine
nformation from different modalities, and emphasise its role in various
tudies for emotion prediction. It is important to note that while early
usion is a straightforward approach, capturing intricate inter-modal
elationships can be challenging.

.1.2. Late fusion
Late fusion involves integrating and combining the decisions made

y each modality to produce the final result, which is a form of decision
usion. [33,34] employ late fusion to combine multimodal features,
hich is executed at the classification result level. The decisions made
y each modality are integrated to derive the ultimate result. [23] em-
loys three separate LSTM-based models, each dedicated to processing
udio, video, and text features independently to capture contextual
nformation. The late fusion is implemented to consolidate the decisions
ade by these models. However, the limitation of assuming modality

ndependence is acknowledged as it may hinder the capture of intricate
nter-modal interactions.

.1.3. Hybrid fusion
Hybrid fusion combines elements of both early and late fusion

ethods. It utilises early fusion for modalities characterised by weak
3

data synchronisation and correlation, while opting for late fusion in
scenarios exhibiting strong correlation and disparate data update pat-
terns. [35] adopts a hybrid fusion approach, initially fusing each of
the two modalities through early fusion. Subsequently, the intermediate
outputs are also fused to give the final results. [36–39] employ hybrid
fusion methods to explore interactions between modalities in isolated
or temporal discourse. However, there remains a challenge in effec-
tively capturing interactions between different modalities, resulting
in limitations in fully exploiting contextual information and handling
complex interactions within dialogues.

Model-independent multimodal fusion methods are versatile ap-
proaches applicable across diverse data types and models. However,
their generic nature also limits their capacity to fully exploit intricate
relationships between different modalities or harness specific features
inherent in the data and models. Despite the broad applicability, the
kind of methods can hardly leverage the full potential of multimodal
information, and the performance varies depending on the complexity
and characteristics of the underlying data and models.

2.2. Model-based fusion methods

The model-based fusion methods leverage specific features inherent
in the data and models, aiming to achieve enhanced performance.
These approaches typically outperform model-independent methods by
effectively utilising the intricate relationships between different modal-
ities and capitalising on the strengths inherent in the chosen models.
The focus on exploiting modality-specific characteristics and modelling
intricacies contributes to improved overall performance compared to
more generic model-independent fusion techniques.

2.2.1. Traditional methods
Traditional multimodal fusion methods are commonly categorised

into multi-kernel learning and graphical models. Multi-kernel learning
enhances the fusion of heterogeneous data by incorporating modality-
specific kernels, facilitating a more nuanced representation of diverse
modalities. Graphical models exploit temporal relationships within data
and offer adaptive and interpretable interpretability. [40] uses a multi-
ple kernel learning approach by combining feature vectors from textual,
visual, and audio modalities to train a classifier.

2.2.2. Deep learning-based methods
Deep learning has offered a significant advantage in multimodal fu-

sion, leveraging their robust information learning capabilities. Effective
fusion of features in neural networks allows models to capture depen-
dencies and complementarities between modalities, thereby improving
overall performance. These methods can generally be categorised into
GNN-based and RNN-based approaches:

GNN-based methods: GNNs have gained widespread application for
processing non-Euclidean data in various fields, such as computer
vision, recommendation systems, and natural language processing [41,
42]. There are widely applied GNN techniques, such as GAT [43],
FastGCN [44], and Graph-SAGE [45], to solve emotion recognition
problems. Some recent works adopt graph structures to fuse unimodal
and multimodal features, which can obtain the contextual relationships
of features and the complementary relationships between modalities.

DialogueGCN [30] proposed to apply a GCN to capture long-
distance contextual information in dialogue. DialogueGCN treats each
utterance as a node and connects any nodes within the same window
in the dialogue. DialogueCRN [46] designed an inference module to
obtain emotional information and tried to understand the context of the
conversation from a cognitive perspective. DAG-ERC [47] treats each
session as a directed acyclic graph (DAG). The DAG can collect infor-
mation about query utterances from adjacent and remote utterances,
which is similar to a combination of graph structure and recursive

structure, achieving better performance.
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Fig. 2. The details of Pairwise Modalities Fusion for modalities of 𝑚1 and 𝑚2. The
input features of 𝑚1 and 𝑚2, after being processed by a bidirectional LSTM, are
subsequently merged with speaker information. The merged features are modelled as a
graph and fused using GCN to generate integrated features. The optimal fusion feature
are extracted with the optimal dual-modal fusion GCN, which is trained combining
predicted labels using multiple Fully Connected (FC) layers.

RNN-based methods: BC-LSTM [23] uses a Bidirectional LSTM struc-
ture to encode contextual semantic information and does not use
speaker information. ICON [1] and CMN [48] both utilise GRUs and
memory networks. MFN [49] aligns the features of different modalities
and uses multi-views information fusion. HiGRU [24] proposes a hier-
archical GRU that uses two levels of GRUs, a lower-level GRU to model
the word-level inputs and an upper-level GRU to capture the contexts of
utterance-level embeddings. DialogueRNN [50] leverages distinct GRUs
to capture speakers’ contextual information. COSMIC [51] achieves
state-of-the-art performance by combining a structure similar to Dia-
logueRNN with external common-sense knowledge. DialogueCRN [46]
uses a bidirectional LSTM and introduces an inference module that can
simultaneously understand situation-level and speaker-level contexts to
construct an ERC model.

3. Methodology

Audio, vision, and text represent the most commonly utilised modal-
ities; therefore, we use them as illustrative examples to elucidate the
proposed methodology. The features of these three modalities are
extracted in pairs to obtain the modality features. The fused features
extracted with designed pairwise modalities fusion are denoted as (VA)
(fusion for video and audio), (TA) (fusion for text and audio), and (TV)
(fusion for text and video).

In this section, the designed Pairwise Modalities Fusion (see Fig. 2)
is introduced in Section 3.1. In Section 3.2, the designed Multiple
Features Fusion is presented. The whole training process for the multi-
modal attention model is shown in Section 3.3. The detailed framework
of our proposed model is shown in Fig. 3.

3.1. Pairwise modalities fusion

The data from different modalities are fused pairwise as shown in
Fig. 2. In the designed pairwise fusion for different modalities, every
two modalities in this method are encoded with the designed mul-
timodal encoder using bidirectional LSTM, and the encoded features
are modelled as graphs to provide the structure information during
modalities fusion. The two modalities denoted as 𝑚1 and 𝑚2.

3.1.1. Modality encoder
To handle the time-series raw data, the designed method adopts

bidirectional LSTM for modelling the sequences and capturing long-
term dependencies in different modalities. Every two modalities are
encoded using a dual-channel bidirectional LSTM model, and each
channel processes the input sequence of one modality. Using bidirec-
tional LSTM, the model can capture temporal relationships between the
two modalities, aiding in better utilisation of information in sequential
data.

For the modalities 𝑚1 and 𝑚2, the context-aware feature encoding
𝑙𝑚1 and 𝑙𝑚2 are as:
4

𝑖 𝑖
𝑙𝑚1
𝑖 =

[

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗LSTM
(

𝑢𝑚1
𝑖 , 𝑙𝑚1

𝑖−1
)

, ⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖LSTM
(

𝑢𝑚1
𝑖 , 𝑙𝑚1

𝑖+1

)]

,

𝑙𝑚2
𝑖 =

[

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗LSTM
(

𝑢𝑚2
𝑖 , 𝑙𝑚2

𝑖−1
)

, ⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖LSTM
(

𝑢𝑚2
𝑖 , 𝑙𝑚2

𝑖+1

)]

,
(1)

where 𝑖 represents the 𝑖th data sample. 𝑢𝑚1
𝑖 and 𝑢𝑚2

𝑖 are the context-
independent raw feature representation in the modalities of 𝑚1 and
𝑚2, respectively. ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐿𝑆𝑇𝑀 denotes the contextual relationships of input
features obtained from forward sequences, and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝐿𝑆𝑇𝑀 denotes from
reverse sequences. [⋅] represents the concatenation operation.

3.1.2. GCN based dual-modal fusion
The high-level features across the two modalities are extracted using

undirected GCN structure, which can learn to aggregate information
from neighbouring nodes, allowing it to capture complex dependen-
cies and patterns in the relationships between encoded features. The
encoded features in the modalities are represented as nodes in the
graph. The connexions (edges) between nodes are established, based on
interactions between corresponding features from different modalities,
making it suitable for capturing relationships between nodes.

To enhance feature extraction leveraged by the integrated GCN
layers, speaker embeddings are embedded into the nodes of the de-
signed GCN structure. The speaker embeddings are the representations
of speaker characteristics obtained through speaker recognition mod-
els. It can involve concatenating the speaker embeddings with the
features from each node in the graph, effectively providing the GCN
with additional information related to speaker characteristics. With
encoding the speaker identity information, the nodes in the modelled
GCN are generated by weighted adding the speaker embedding 𝑠𝑖 with
the output results of the bidirectional LSTM 𝑙𝑚1

𝑖 , 𝑙𝑚2
𝑖 as:

𝑛𝑚1
𝑖 = 𝑤𝑝𝑠𝑠𝑖 + 𝑙𝑚1

𝑖 ,

𝑛𝑚2
𝑖 = 𝑤𝑝𝑠𝑠𝑖 + 𝑙𝑚2

𝑖 ,
(2)

where 𝑛𝑚1
𝑖 and 𝑛𝑚2

𝑖 denote the 𝑖th nodes in the modelled GCN. 𝑤𝑝𝑠 rep-
resents the learnable weight parameters. 𝑠𝑖 is the speaker information.
Thus, we have the set of nodes 𝑉𝑝 = {𝑛𝑚1

1 , 𝑛𝑚2
1 , 𝑛𝑚1

2 , 𝑛𝑚2
2 ,… , 𝑛𝑚1

𝑁 , 𝑛𝑚2
𝑁 },

where 𝑁 is the number of samples in each modality.
In order to extract temporal and inter-modal information more

comprehensively, each sample is linked to various samples within its
own modality and is also connected to the sample at the current
moment in another modality. These connexions are referred to as intra-
modal and inter-modal edges, respectively. The weight of intra-modal
edge can be obtained as:

𝑊 𝑎
𝑖𝑗 = 1 −

arccos
(

sim
(

𝑛𝑚1
𝑖 , 𝑛𝑚2

𝑗

))

𝜋
, (3)

where 𝑛𝑚1
𝑖 and 𝑛𝑚2

𝑗 represent the 𝑖th node of 𝑚1 and 𝑗th node of 𝑚2,
respectively. 𝑠𝑖𝑚 is the cosine similarity. The weight of inter-modal
edge can be defined as:

𝑊 𝑒
𝑖 = 𝛾(1 −

arccos
(

sim
(

𝑛𝑚1
𝑖 , 𝑛𝑚2

𝑖
))

𝜋
), (4)

where 𝑛𝑚1
𝑖 and 𝑛𝑚2

𝑖 represent the 𝑖th nodes of 𝑚1 and 𝑚2, respectively.
𝛾 is a hyperparameter.

The intra-modal edges are used to capture the contextual infor-
mation within the modality, while inter-modal edges are used to
capture the interactive information across modalities. Thus, the set
of weights 𝑝 = {𝑊 𝑎

11,𝑊
𝑎
12,… ,𝑊 𝑎

1𝑛,𝑊
𝑎
22,𝑊

𝑎
23,… ,𝑊 𝑎

𝑛𝑛,𝑊
𝑒
1 ,𝑊

𝑒
2 ,… ,𝑊 𝑒

𝑛 }
can be obtained via Eqs. (3) and (4).

By depicting the outcomes of modality encoding as an undirected
graph 𝐺𝑝 = (𝑉𝑝, 𝑝), the model can adeptly grasp and exploit the
interrelationships among features originating from diverse modalities.
This process facilitates improved feature extraction for subsequent
tasks. The spectral domain GCN is constructed to encode multimodal
contextual information, which uses learnable speaker embeddings to
encode speaker-level contextual information (see Fig. 3).
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Fig. 3. The details of our proposed fusing pairwise modalities for ERC. The proposed model consists of three parts, including Pairwise Modalities Fusion (PMF), Multiple Features
Fusion (MFF), and Multimodal Attention Learning (MAL).
3.1.3. Training
After constructing the undirected graph, in order to better encode

the context, for the designed 𝐺𝑝 = (𝑉𝑝, 𝑝), the following method is used
to obtain the renormalised graph Laplacian matrix [52], and the fusion
feature for the two modalities are calculated as:

𝐸(𝑚1𝑚2) = GCN𝑝(𝑉𝑝, 𝑝), (5)

where 𝐸(𝑚1𝑚2) is the PMF result for the modalities of 𝑚1 and 𝑚2.
To train the GCN𝑝 model for feature fusion, the fully connected (FC)

layer is added after the features of GCN𝑝 for the recognition training. In
addition, we design the density loss 𝑝𝑑 to represent the density of fu-
sion features for reducing the redundancy after the pairwise modalities
fusion.

𝑝𝑑 = ‖𝐸(𝑚1𝑚2)
‖1, (6)

where ‖ ⋅ ‖1 denotes the L1 norm. Thus, the trained loss function
can be formularised with the categorical cross-entropy 𝑝𝑐 , 𝑝𝑑 , and
L2-regularisation as

PMF = 𝑝𝑐 + 𝜆𝑝1𝑝𝑑 + 𝜆𝑝2‖𝜃𝑝‖2, (7)

where 𝜆𝑝1 is the weight for density. 𝜆𝑝2 is the weight for L2-
regularisation. 𝜃𝑝 denotes all the trainable parameters in the trained
model. The introduction of regularisation can prevent model overfitting
in training [53].

By optimising the designed PMF, the input features of modalities
𝑚1 and 𝑚2 can be fused, and then obtaining the fused feature 𝐸(𝑚1𝑚2)

before the fully connected layer. The redundant features between the
modalities of 𝑚1 and 𝑚2 can also be reduced by optimising the designed
𝑝𝑑 . We take the most widely used modalities as the examples, so three
fused features 𝐸(VA), 𝐸(TA), and 𝐸(TV) can be obtained with the designed
method.

3.2. Multiple features fusion

The results of pairwise fused modalities are processed with GRU
[54] to capture the time-dependent relationship in the time-series
features. GRU performs well in capturing short-term dependencies for
sequential data. It is particularly effective in tasks where remembering
recent information is crucial for making predictions. With fewer param-
eters and a simpler structure, GRU is generally less prone to overfitting,
especially when working with limited amounts of training data. It has
demonstrated good performance in tasks involving sequential data due
to its ability to capture dependencies over time [55].

ℎ(VA)𝑡 = GRU1(ℎ
(VA)
𝑡−1 , 𝐸(VA)

𝑡 ),

ℎ(VT)𝑡 = GRU1(ℎ
(VT)
𝑡−1 , 𝐸(VT)

𝑡 ),

ℎ(VA)𝑡 = GRU1(ℎ
(VA)
𝑡−1 , 𝐸(VA)

𝑡 ),

(8)

where 𝑡 represents the 𝑡th data sample. 𝐸(VA)
𝑡 , 𝐸(VT)

𝑡 , and 𝐸(AT)
𝑡 are

derived from the fused VA, VT, and AT fusion features, respectively.
5

ℎ(VA)𝑡 , ℎ(VT)𝑡 , and ℎ(VA)𝑡 are the GRU results for the VA, VT, and AT fusion
features, respectively.

The results of these GRU modules are also modelled with GCN
structure to extract the high-level features with structure information.
Similarly, the original speaker information is also embedded with
speaker embedding to encode the speaker identity information.

𝑛(VA)𝑡 = 𝑤𝑚𝑠𝑠𝑡 + ℎ(VA)𝑡 ,

𝑛(VT)𝑡 = 𝑤𝑚𝑠𝑠𝑡 + ℎ(VT)𝑡 ,

𝑛(AT)𝑡 = 𝑤𝑚𝑠𝑠𝑡 + ℎ(AT)𝑡 ,

(9)

where 𝑤𝑚𝑠 represents the learnable weight parameters, and 𝑠𝑡 repre-
sents the speaker information. Thus, we can have the set of nodes
𝑉𝑓 = {𝑛(VA)1 , 𝑛(VT)1 , 𝑛(AT)1 ,… , 𝑛(VA)𝑁 , 𝑛(VT)𝑁 , 𝑛(AT)𝑁 }.

The edges in the GCN structure also connect the nodes in the same
modality to form intra-modal edges and the nodes at the same moment
between different modalities for inter-modal edges as (3) and (4),
respectively. Thus, we can obtain the set of weights 𝑓 , and construct
the GCN structure of 𝐺𝑓 = (𝑉𝑓 , 𝑓 ).

Therefore, the pairwise modalities fusion features can be processed
with GCN𝑓 .

𝐸(VAT) = GCN𝑓 (𝑉𝑓 , 𝑓 ), (10)

where 𝐸(VAT) is the modalities fusion result for all the modalities.
To enhance the contextualised semantic [56] and syntactic [57]

understanding, the text feature is extracted via a RoBERTa pre-trained
language model [58], which benefits from extensive pre-training that
helps the model capture a diverse range of linguistic patterns and
representations. RoBERTa uses a dynamic masking strategy during
pre-training, where different masks are applied to different training
instances, so it can enhance the model’s ability to generalise across
various tasks [59,60].

The features processed with RoBERTa are denoted as 𝑢(𝐵𝑡) and also
capture the time-dependent relationship with the GRU structure as:

ℎ(𝐵𝑡)𝑡 = GRU2(ℎ
(𝐵𝑡)
𝑡−1 , 𝑢

(𝐵𝑡)
𝑡 ), (11)

The results of GRU are processed by the Transformer encoder [61],
allowing for parallelisation of training due to its self-attention mech-
anism, which enables the model to attend to all positions in the
input sequence simultaneously, leading to faster training times. The
Transformer encoder is scalable to different input lengths, and the
self-attention mechanism in Transformers allows for efficient process-
ing of both short and long sequences without significantly increasing
computation.

A Transformer encoder with a variable stack is used to learn dis-
course context information for ℎ(𝐵𝑡)𝑡 , resulting in 𝐸(𝐵𝑡). The results of
𝐸(𝐵𝑡) are concatenated with the 𝐸(VAT), so that the features fusion
can be obtained combined with the text information extracted by the
RoBERTa model.

𝐸(MF) =
[

𝐸(VAT), 𝐸(𝐵𝑡)] , (12)

where 𝐸(MF) is the multiple features fusion for these modalities.
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3.3. Multimodal attention learning

The designed multimodal attention learning jointly models and
learns attention mechanisms across multiple modalities. The attention
mechanism [61] is employed to capture and emphasise important
information in a sequence or set of features [62,63]. Dealing with
multimodal data, learning attention across these modalities becomes
crucial for effective information fusion and understanding. Attention
mechanisms facilitate the fusion of information from different modal-
ities. By giving varying degrees of importance to different modalities
or regions within modalities, the model can create a more informative
and contextually rich representation. The attention weights assigned to
different modalities or features can be dynamic and adapt to the input
data. This adaptability is particularly useful when dealing with diverse
or changing relationships between modalities.

In order to improve feature transfer efficiency and model training
stability [64], skip-connection is adopted in the designed model and
combined with the multi-head attention structure. The fused feature
ℎ(VA)𝑡 is skip-connected to the multi-head attention directly, and ℎ(𝐵𝑡)𝑡 is
skip-connected to the result of multi-head attention. After applying the
attention mechanism to the features fusion 𝐸FF, we perform sentiment
lassification on the dataset. The attention mechanism is used to cap-
ure features that contain emotional tendencies or emotional factors.

1 = ATT1(𝐸(MF)),

𝐶𝑖 = ATT𝑖(
[

𝐶𝑖−1, ℎ
(VA)
𝑡

]

),
(13)

here ATT𝑖 is the multi-head self-attention mechanism for the 𝑖th layer.
he ℎBt𝑡 is skip-connected to the result of the last layer 𝐶𝑙 in the multi-

head self-attention mechanism to form the fused feature of multimodal
𝐸MM =

[

𝐶𝑙 , ℎ
(𝐵𝑡)
𝑡

]

. 𝐸(MM) is set into several fully connected layers to

et the predicted labels. The model is also trained with the density loss
𝑚𝑑 to remove redundancy among different modalities.

𝑚𝑑 = ‖𝐸(MM)
‖1. (14)

The training loss function is formed with the categorical cross-
ntropy 𝑚𝑐 , density loss 𝑚𝑑 , and L2-regularisation as

MAL = 𝑚𝑐 + 𝜆𝑚1
𝑚𝑑 + 𝜆𝑚2

‖𝜃𝑚‖2, (15)

where 𝜆𝑚1
is the weight for density. 𝜆𝑚2

is the weight for L2-
regularisation. 𝜃𝑚 denotes all the trainable parameters in the trained
model. The designed multimodal attention learning involves integrat-
ing information from different modalities. This enables the model
to understand the relationships and dependencies between different
modalities, leading to more comprehensive representations.

4. Experiments

4.1. Datasets

The proposed method is evaluated on two conversational multi-
modal emotion recognition benchmark datasets with aligned acoustic,
visual, and textual information for each utterance in the dialogue. The
IEMOCAP dataset is split into Training, Validation, and Test sets with a
distribution of 100:20:31. In the MELD dataset, the partition ratio is set
as 1038:114:280 for Training, Validation, and Test sets, respectively.
Our dataset setup is consistent with that in [65].

IEMOCAP [25]: The IEMOCAP dataset is a multimodal dataset
for emotion recognition and speech emotion recognition. The dataset
includes approximately 12 h of audio and video recordings from 10
speakers, including speech and facial expression data. It includes a total
of 7433 utterances and 151 dialogues. The IEMOCAP dataset contains 6
emotion categories: happiness, sadness, neutral, anger, excitement, and
frustration. Each emotion category includes approximately 200 speech
6

recordings.
MELD [26]: MELD (Multimodal Emotion Lines Dataset) is a dataset
for emotion recognition and multimodal sentiment analysis that in-
cludes dialogue segments from a television show with video, audio,
and text data. The MELD dataset contains 7 emotion categories: anger,
disgust, fear, joy, neutral, sadness, and surprise, with a total of approx-
imately 1400 dialogue segments and over 13 000 utterances. MELD has
three or more speakers in one conversation.

4.2. Setups

In the IEMOCAP dataset, specific hyperparameters are employed
during the Pairwise Modalities Fusion (PMF) for training fusion fea-
tures involving audio and video, video and text, and text and audio.
The hyperparameter configuration includes a dropout rate of 0.15, a
learning rate of 0.0002, 𝜆𝑝1 set to 0.00002, 𝛾 at 0.7, and 𝜆𝑝2 at 0.00002.
In the Multiple Features Fusion, the dropout rate is adjusted to 0.25, the
learning rate becomes 0.00015, 𝜆𝑚1

is set to 0.00002, 𝛾 is maintained at
0.7, and 𝜆𝑚2

is held at 0.00002. The transformer encoder configuration
includes one header and one layer. For the MELD dataset, a similar
pattern is followed in the PMF with a dropout rate set to 0.2, a learning
rate of 0.0002, 𝜆𝑝1 at 0.0002, 𝛾 set to 0.7, and 𝜆𝑝2 of 0.00002 during
the training of fusion features. In the Multimodal Attention Learning,
the dropout rate is set to 0.1, the learning rate is increased to 0.0004,
𝜆𝑚1

is set to 0.0002, 𝛾 is maintained at 0.7, and 𝜆𝑚2
is adjusted to

0.000015. The Transformer encoder in this case has four headers and
one layer. These hyperparameter settings are specifically tailored for
effective training and fusion of multimodal features in each dataset.

The features in different modalities are extracted before input the
model. Vision: The visual facial expression features are extracted using
the DenseNet [66] pre-trained on the Facial Expression Recognition
Plus (FER+) corpus [67]. Audio: The acoustic raw features are extracted
using the OpenSmile toolkit with the IS10 configuration [68]. Text :
Two extraction methods are used to obtain text features. (1) The text
feature is extracted using TextCNN following ICON [1]. TextCNN uses
a Convolutional Neural Network (CNN) for text classification, which is
a simple model that can serve as a baseline for text classification. (2)
The RoBERTa-Large [58] model is used to extract context-independent
utterance-level feature vectors. A special token [𝐶𝐿𝑆] is added at the
beginning of the utterance. These vectors are averaged and passed
through a linear layer to obtain a context-independent utterance feature
vector.

4.3. Baselines

Our method is compared with several baselines.

CMN [48]: CMN uses two GRUs to encode the conversational context
of the speaker, which achieves the state of the art. CMN considers the
utterance histories of both speakers to model emotional dynamics.

BC-LSTM [23]: BC-LSTM uses a Bidirectional LSTM structure to encode
contextual semantic information, which is the earliest method used
on the MELD dataset and IEMOCAP dataset. BC-LSTM ignores speaker
information because it does not attach any information related to the
speaker to their model.

ICON [1]: ICON uses a global GRU to model the variance of in emotion
within a conversation. ICON introduce a multimodal approach that
provides comprehensive features from modalities such as language,
visual, and audio in utterance videos.

DialogueRNN [50]: DialogueRNN uses three GRUs to capture distinct
aspects of speaker-related information. Specifically, these three GRUs
are dedicated to extracting contextual information, modelling speaker
identity, and discerning the emotional content of the speech.

DialogueGCN [30]: DialogueGCN is the first work applied GCN to emo-
tion classification, using GCN to construct the contextual relationship of

utterances. DialogueGCN only uses information from the text modality,
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Table 1
Experimental results (Accuracy and Average-weight F1 score) on the IEMOCAP dataset.
Average-F1 means Average-weight F1 score.

IEMOCAP MELD

Acc F1 Acc F1

CMN [48] 56.32 56.19 – –
BC-LSTM [23] 55.21 54.95 59.62 56.80
ICON [1] 64.00 63.50 – –
DialogueRNN [50] 63.50 63.50 59.54 57.03
DialogueGCN [30] 63.22 64.18 58.62 58.10
COSMIC [51] – 65.30 – 65.21
MMGCN [20] 66.36 66.22 60.42 58.65
HFGCN [69] – 67.24 – 59.71
DAG-ERC [47] – 68.03 – 63.65
DialogueCRN [46] 66.05 66.33 60.73 58.39
MM-DFN [32] 68.21 68.18 62.49 59.4
COGMEN [31] 68.2 67.6 – –
GraphCFC [21] 69.13 68.91 61.42 58.86

Ours 69.57* 69.34* 67.13* 66.05*

* Denotes the improvements are statistically significant on a two-tailed t-test (𝑝 <
0.001).

which prevents it from taking advantage of complementary information
between different modalities.

COSMIC [51]: COSMIC is a state-of-the-art method that improves
emotion classification by obtaining commonsense knowledge using
ATOMIC. Similar to DialogueGCN, COSMIC only uses information from
the text modality and ignores complementary information between
different modalities.

MMGCN [20]: MMGCN effectively uses GCN to fuse audio, video, and
text features. It also uses speaker information. MMGCN first uses a
graph structure to obtain the interaction relationships of the three
modalities.

HFGCN [69]: HFGCN uses a new graph fusion method, including
two-stage graph construction, attention-based edge weights, and rela-
tionship graph transformation to capture multimodal interaction. It also
proposes a multi-task loss to guide the joint prediction of emotion labels
and Valence-Arousal (VA) levels.

DAG-ERC [47]: DAG-ERC uses a directed acyclic graph to collect in-
formation from adjacent and remote utterances in the query utterance.
DAG-ERC provides an effective way to model the information flow
between long-distance conversation context and nearby context.

DialogueCRN [46]: DialogueCRN designs an inference module that can
understand both situation-level and speaker-level contexts, which first
proposes to understand the conversational context from a cognitive
perspective. It can extract and integrate emotional cues from contextual
information.

MM-DFN [32]: MM-DFN designs a dynamic fusion module to fuse
multimodal context features in the conversation.

COGMEN [31]: COGMEN proposes a contextualised GNN to solve
the impact of context on utterances and the internal and external
dependencies for predicting the emotions of each speaker’s utterance
during the conversation.

GraphCFC [21]: GraphCFC introduces a module for cross-modal fea-
ture complementarity, utilising a directed graph to proficiently cap-
ture contextual and interaction information. This approach attains a
state-of-the-art performance.

5. Results

The benchmarking results are shown in Table 1. It can be observed
hat our proposed method achieves the highest accuracy and F1 scores
7

mong the existing methods.
Table 2
Ablation study of the different components impact of the proposed method on
performance (Average-weight F1 score and Accuracy).

PMF DL MAL IEMOCAP MELD

F1 Acc F1 Acc

11 × × × 64.70 64.39 64.07 64.42
12 ✓ × × 66.17 66.85 64.54 64.72
13 × × ✓ 64.97 65.37 64.25 65.07
14 ✓ × ✓ 68.04 68.02 65.13 66.05
15 ✓ ✓ × 67.22 67.31 64.82 65.43
16 ✓ ✓ ✓ 69.34 69.57 66.05 67.13

On the IEMOCAP dataset, our method demonstrates a notable aver-
age F1 score of 69.34% and achieves the accuracy of 69.57%. Particu-
larly, COSMIC is a representative method based on RNNs, incorporating
commonsense elements such as mental states, events, and causal re-
lations with enhanced text features. However, our proposed method
outperforms COSMIC by 4.04% F1 scores. MMGCN is a representative
multimodal fusion method, utilising graph convolution on undirected
graphs with speaker information. GraphCFC is a leading cross-modal
feature complementary method, based on directed graphs. Compared
with these methods, our proposed method exhibits superior results,
surpassing MMGCN and GraphCFC by 3.12% and 0.43% in weighted
average F1 scores, respectively.

On the MELD dataset, our method exhibits an impressive average F1
score of 66.05% and attains an accuracy performance of 67.13%. No-
tably, our method surpasses existing methods by at least 0.84% in terms
of F1 scores. Particularly, our method outperforms COSMIC by over
0.84% on the F1 score, highlighting its superior performance. For in-
stance, baseline methods such as HFGCN, MMGCN, DialogueGCN, and
DialogueRNN without leveraging pre-trained language models achieve
the F1 scores of 59.71%, 58.65%, 58.10%, and 57.03%, respectively. In
contrast, our proposed method yields 66.05% F1 scores, showcasing the
effectiveness of integrating the RoBERTa text features. Notably, among
the baseline methods, DAG-ERC and COSMIC, which leverage RoBERTa
text features, attain F1 scores of 63.65% and 65.21%, respectively.
However, these scores still lag behind our proposed method.

To analyse the utility of each module in our framework, multiple
ablation studies are conducted on the IEMOCAP and MELD datasets,
respectively. The ablation experiments scrutinise the influence of var-
ious modules, encompassing the impact of distinct components in
the proposed method (Section 5.1); the effects of Pairwise Modalities
Fusion (Section 5.2); the consequences of Multiple Features Fusion
(Section 5.3); (4) the implications of Multimodal Attention Learning
(Section 5.4).

5.1. Effect of different components

To verify the effect of different components in the proposed method,
the roles of the Pairwise Modalities Fusion (PMF), the Density Loss
(DL) (i.e., 𝑝𝑑 and 𝑚𝑑), and Multimodal Attention Learning (MAL)
modules are studied. The model is trained with different combinations.
The performance of different networks (11 ∼ 16) is listed in Table 2.
Symbol ✓denotes that the component is used for quantisation training.
The symbol × indicates that the component is excluded for training.

The comparison between the networks of 11 and 12 reveals that
the incorporation of the PMF module significantly enhances model
performance. The absence of PMF results in a notable degradation in
performance on both IEMOCAP and MELD datasets, providing empiri-
cal evidence for the efficacy of the designed PMF. Similarly, the com-
parison between 11 and 13, as well as 15 and 16, demonstrates
that the adoption of the density loss efficiently improves network
performance, which is caused by the redundancy removing with the
density loss in enhancing the overall performance of the network.
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Fig. 4. Feature visualisation using t-SNE. The t-SNE plots of the ablation experiments 11, 12, 13, 14, 15, and 16 on the IEMOCAP dataset. The features in same categories
can be clustered more tightly in 16 (Ours), which means the proposed method can help to learn more information for improving the classification performance.
Table 3
Performance (Average-weight F1 score and Accuracy) under different multimodal
settings. T represents text modality, A represents audio modality, and V represents
visual modality.

PMF Modalities IEMOCAP MELD

A V T F1 Acc F1 Acc

21 × ✓ × × 53.40 54.22 44.57 48.64
22 × × ✓ × 34.61 36.35 32.83 35.15
23 × × × ✓ 65.01 65.68 64.47 64.82
24 ✓ ✓ × ✓ 66.29 66.59 64.84 65.34
25 ✓ × ✓ ✓ 64.76 65.22 64.75 65.07
26 ✓ ✓ ✓ ✓ 69.34 69.57 66.05 67.13

Moreover, through a comparative analysis of the outcomes achieved
by 14 and 16 employing the MAL module, it becomes apparent that
the incorporation of MAL leads to enhanced performance on both the
IEMOCAP and MELD datasets. This underscores the crucial role of MAL
in augmenting model performance and emphasises the positive impact
of these modules on overall model effectiveness.

In order to better visualise the performance of different networks,
Fig. 4 presents the feature distributions of the network 11 ∼ 16
on the IEMOCAP dataset (a∼f) with t-SNE [70]. Fig. 4 shows the
distribution for classification by transferring data from high dimensions
into the two-dimensional space [71]. It is evident that the features
in the same categories can be clustered more tightly in 16 (Ours in
Fig. 4f), which means the proposed method can help to learn more
information for improving the classification performance.

5.2. Impact of pairwise modalities fusion

To evaluate the impact of different components in Pairwise Modal-
ities Fusion, Table 3 presents the performance of different networks
(21 ∼ 26), trained with and without PMF, employing different
modality combinations. The networks (21 ∼ 23) are individually
trained with a single modality: 21 with the Audio modality, 22 with
the Video modality, and 23 with the Text modality. Networks (24
and 25) are trained with one pairwise modalities fusion: 24 with
Audio and Text modalities, and  with Video and Text modalities.
8

25
Table 4
Ablation study of the different variants impact on multiple features fusion
(Average-weight F1 score and Accuracy).

GCN 𝑠𝑡 ℎ(𝐵𝑡)
𝑡 𝐸(𝐵𝑡) IEMOCAP MELD

F1 Acc F1 Acc

31 × × ✓ ✓ 65.99 66.67 64.28 64.42
32 ✓ ✓ × × 67.89 68.15 58.56 59.25
33 × ✓ ✓ ✓ 66.67 66.61 64.67 65.41
34 ✓ ✓ ✓ × 67.64 68.08 65.37 66.17
35 ✓ ✓ × ✓ 68.14 68.52 59.17 59.72
36 ✓ × ✓ ✓ 68.10 68.27 65.73 66.47
37 ✓ ✓ ✓ ✓ 69.34 69.57 66.05 67.13

The network 26 is trained with all three modalities, and it is
the proposed method. By comparing the performance of 21 ∼ 23,
it becomes evident that within the unimodal framework, the text
modality significantly outperforms both the audio and video modalities.
This finding suggests that the features inherent to the text modality
exhibit superior effectiveness, particularly in the context of the MELD
and IEMOCAP datasets. Analysing the outcomes of 24 ∼ 25 in
comparison to 21 ∼ 23 highlights the effectiveness of the designed
Pairwise Modalities Fusion (PMF) in enhancing network performance.
The results show that the multimodal configuration outperforms the
unimodal settings. The performance improvement is evident from the
outcomes of 24 ∼ 25 and 26, showcasing the proposed method’s
capability to fuse information from all three modalities.

5.3. Impact of multiple features fusion

To evaluate the impact of each part in Multiple Features Fusion, the
networks of 31 ∼ 37 are trained with different parts in the Multiple
Features Fusion (i.e., GCN structure, 𝑠𝑡, ℎ

(𝐵𝑡)
𝑡 and 𝐸(𝐵𝑡)), and the results

are listed in Table 4.
To assess the influence of employing GCN, the results of 31 and

33 are compared with 36 and 37. Notably, omitting GCN leads
to decreases in F1 score on both the IEMOCAP and MELD datasets,
emphasising the substantial impact of GCN on model performance.
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Table 5
Ablation study of the different variants impact on multimodal attention learning
(Average-weight F1 score and Accuracy).

ℎ(𝐵𝑡)
𝑡 ℎ(VA)

𝑡 ATT IEMOCAP MELD

F1 Acc F1 Acc

41 × × × 67.22 67.31 64.75 65.16
42 × × ✓ 67.74 67.93 64.82 65.43
43 ✓ × × 67.57 67.74 64.91 65.24
44 ✓ ✓ × 68.23 68.33 65.27 65.74
45 ✓ × ✓ 68.14 68.02 65.42 66.13
46 × ✓ ✓ 68.47 68.75 65.15 65.68
47 ✓ ✓ ✓ 69.34 69.57 66.05 67.13

Furthermore, the comparison between 31 and 33, as well as 36
nd 37, reveals that the inclusion of 𝑠𝑡 contributes to enhanced model
erformance on both the IEMOCAP and MELD datasets. Analysing
ifferent networks (i.e., 32 and 34, 35 and 37), it is evident
hat incorporating ℎ(𝐵𝑡)𝑡 significantly improves the Average-weight F1-
core on both the IEMOCAP and MELD datasets. This highlights the
ubstantial impact of ℎ(𝐵𝑡)𝑡 features, especially on the MELD dataset.
t can be observed that the enhancement in performance with ℎ(𝐵𝑡)𝑡
s evident on both the MELD and IEMOCAP datasets, with a more
ignificant improvement observed in the case of the MELD dataset.
otably, the IEMOCAP dataset is derived from continuous dialogues,
hereas the MELD dataset, being drawn from TV shows, often lacks

he continuity typical of continuous dialogues [47]. In this context,
(𝐵𝑡)
𝑡 demonstrates effectiveness in alleviating performance degradation
esulting from non-continuous dialogues. Additionally, the removal of
(𝐵𝑡)𝑡 results in F1 score decreases on the IEMOCAP and MELD datasets
hen comparing the results of 34 and 37, indicating the positive role
f the Transformer encoder in improving model performance.

.4. Impact of multimodal attention learning

Table 5 illustrates the impact of different variants in multimodal
ttention learning, encompassing the utilisation of multi-head self-
ttention, the incorporation of ℎ(VA)𝑡 with skip-connection, and the
ntegration of ℎ(𝐵𝑡)𝑡 with skip-connection. By examining the perfor-
ance of different networks (i.e., 41 with 43, 42 with 45, 46
ith 47), the incorporation of ℎ(𝐵𝑡)𝑡 is shown to enhance network
erformance. Notably, a significant performance decrease is observed
hen omitting ℎ(VA)𝑡 , as seen in the comparison between 42 and
46, as well as 45 and 47. This indicates that by concatenating

(VA)
𝑡 and ℎ(Bt)𝑡 through a skip-connection, the degradation phenomenon
esulting from an increase in network layers can be mitigated to some
xtent. Moreover, comparing the performance of different networks
i.e., 41 with 42, 43 with 45, 44 with 47) indicates that
he utilisation of multi-head self-attention improves network perfor-
ance. This underscores the effectiveness of the multi-head attention
echanism in comprehending contextual information. The multi-head

ttention mechanism can capture correlations between all elements
n the sequence, addressing the limitation of RNN-based networks in
apturing distant contextual relationships. Therefore, integrating the
ulti-head attention mechanism can effectively enhance model per-

ormance. These experimental results underscore the effectiveness of
ncorporating skip-connection and multi-head self-attention in enhanc-
ng the performance of our model in the context of attention emotion
ecognition.

. Conclusion

In this paper, we propose a novel multimodal fusion framework
o tackle the challenges associated with integrating information from
iverse modalities. The introduction of a novel pairwise fusion ap-
roach enhances integration efficiency, deviating from conventional
9

irect fusion methods.
The designed density loss, incorporating L1 norm regularisation,
uccessfully addresses redundancy issues, preventing overfitting and
acilitating better generalisation. Our contributions are substantiated
y extensive experiments on the IEMOCAP and MELD datasets, where
ur framework consistently outperforms existing methods. The demon-
trated superior performance validates the efficacy of our approach
n handling real-world multimodal data. In essence, our work makes
ignificant strides in advancing the field of multimodal fusion by of-
ering practical solutions to challenges such as complexity reduction,
edundancy mitigation, and adaptive information capture. These con-
ributions are poised to impact a wide range of applications, from
motion recognition to dialogue generation, providing researchers and
ractitioners with effective tools to enhance the efficiency and accuracy
f multimodal models. As multimodal data becomes increasingly preva-
ent, our framework stands as a valuable contribution to the ongoing
volution of this important research area. In future work, we will
mprove the explainability of our model in decision-making [72] and
everage external knowledge and pragmatic processing techniques [73]
o enhance the performance of the proposed method.
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