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The majority of user-generated content posted online is in the form of text, images and videos but also 

physiological signals in games. AffectiveSpace is a vector space of affective commonsense available for 

English text but not for other languages nor other modalities such as electrocardiogram signals. We over- 

come this limitation by using deep learning to extract features from each modality and then projecting 

them to a common AffectiveSpace that has been clustered into different emotions. Because, in the real 

world, individuals tend to have partial or mixed sentiments about an opinion target, we use a fuzzy logic 

classifier to predict the degree of a particular emotion in AffectiveSpace. The combined model of deep 

convolutional neural networks and fuzzy logic is termed Convolutional Fuzzy Sentiment Classifier. Lastly, 

because the computational complexity of a fuzzy classifier is exponential with respect to the number of 

features, we project features to a four dimensional emotion space in order to speed up the classification 

performance. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

Sentiment analysis aims to classify text and video [1] into either

positive, negative or neutral [2] . Detecting sentiments in social me-

dia such as text and video can help us understand opinions about

products and events [3,4] . Recently, physiological signals such as

electrocardiogram (ECG) are being used to understand personality

and the effects of social interactions during game play [5] . Fur-

thermore, media may be in multiple languages such as English or

Spanish. Fusion of multimodal content has several challenges such

as hyper-parameter tuning, interpretability, and speed. 

In [6] , the authors used unsupervised topic modeling for

weighting the features from one modality before transferring to

another modality. However, topic modeling is not suitable for pre-

dicting sentiments as it is unable to model underlying fine-grained

sentiments such as ‘frustration’ and ‘remorse’. Instead, in this pa-

per we use deep learning [7] to extract features from each modal-

ity and then project them to AffectiveSpace [8] , a vector space

model of commonsense concepts such as ‘beautiful painting’ or

‘poor writing’ [9] . 

The complete network where nodes are concepts and edges de-

termine the hierarchy among them is called SenticNet [10] . A di-

mensionality reduction of SenticNet results in AffectiveSpace [11] .

It allows us to find semantics (semantically related concepts)
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or each given concept. Lastly, 24 basic emotions in the Hour-

lass model [12] are used as centroids to cluster AffectiveSpace.

ig. 1 shows a 2D view of the Hourglass model that classifies Level-

 emotions into 4 different categories. There are 4 Level-2 emo-

ions formed by the composition of any two Level-1 emotions. 

In the real world, individuals have partial or mixed sentiments

bout an opinion target, e.g., “iPhoneX has a nice touch screen,

ut it’s very costly”. A fuzzy logic classifier has membership func-

ions that can range between partial positive and partial negative.

ence, it is ideal for modeling emotions in AffectiveSpace. Such

eatures are easily able to adapt to the context in a particular do-

ain (Books or Electronics) or a particular data type (Video or Text

r Heart Signals) or a language (Spanish or English). In this way,

e can solve multi-domain and multimodal challenges. Further-

ore, such a model only requires two membership functions to

ombine the emotions resulting in low computational complexity. 

The organization of the paper is as follows: Section 2 reviews

elated works and datasets on sentiment detection; Section 3 pro-

ides the preliminary concepts necessary to understand the

resent work; Section 4 details the proposed model for predicting

entiments in video and text; finally, in Section 5 we validate our

ethod on different datasets and provide conclusions in Section 6 .

. Related work 

Sentiment prediction aims to classify customer experiences as

ositive or negative. Emotion recognition is a fine-grained model

ccounting for each sentiment such as ‘angry’ or ‘happy’ [13] . Tra-

itional methods for multimodal fusion of sentiments are unable

https://doi.org/10.1016/j.patrec.2019.04.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.04.024&domain=pdf
mailto:cambria@ntu.edu.sg
https://doi.org/10.1016/j.patrec.2019.04.024
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Fig. 1. Different values of Level 1 emotions result in Level 2 emotions. 
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o cope with the diversity of data types such as ‘Text’, ‘Audio’ or

Video’. Furthermore, it becomes difficult to optimize parameters

cross different modalities and sub emotions simultaneously. For

xample, in [14] the authors employ multiple kernel learning for

usion of audio, visual and textual features that are extracted using

eep learning. 

A limitation of their method is large number of features that

re difficult to visualize. Instead, we show that we can project both

ext and video features into a 4 dimensional AffectiveSpace and

he complex emotions can be visualized by fuzzy blending of par-

ial sub-emotions. In [15] , the authors consider multi-lingual senti-

ent analysis by combining lexical features such as part of speech

nd word vectors. However, their method is unable to model emo-

ions in video or signals. Another author used deep memory net-

orks to capture the sentiment of individual words in restaurant

eviews [16] . They consider an additional ‘attention’ node in each

ayer to capture the location of words. This method has quadratic

omplexity, hence we extract convolutional features using a sliding

indow to capture the context of words in relation to its neigh-

ors [17] . 

Long short-term memory (LSTM) networks have also been used

or summarizing sentiments in product reviews where each hidden

euron represents a single word. The LSTM model can remember

ong-range dependencies in a sentence such as between the first

nd the last word [18] . However, it is difficult to train LSTM as

here are a large number of parameters. In contrast, we propose to

se a recurrent neural network (RNN) model with a single memory

tate. Here, the input to RNN are bi-grams and tri-grams extracted

sing deep learning. In this way, we can reduce the dimensionality

f the model. 

Fig. 2 illustrates the deep convolutional model. The input is a

equence of individual words in a sentence. In the second layer,

wo consecutive words are combined to form significant bi-grams
Fig. 2. Layers in a Deep Sentiment Model. 
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uch as ‘Enchanted Location’. Such bi-grams are combined in the

hird layer using logical connectors such as ‘but’. In summary, each

imension of AffectiveSpace corresponds to a specific emotion such

s ‘Happy’ or ‘Sad’. Such annotations do not exist in languages

uch as ‘Spanish’. The problem is amplified for the case of video

here only facial expressions are used to determine sentiment or

or physiological signals such as ECG. In this paper, we projected

he features in videos and Spanish text to AffectiveSpace. Such fea-

ures are easily able to adapt to the context in a particular ‘domain’

Books or Electronics) or a particular data type such as (Video or

ext or Signals). For video or ECG dataset, the input is the sequence

f images in a video and the label is the polarity of facial expres-

ion. It will project the learned emotion features onto AffectiveS-

ace of emotions. Furthermore, fuzzy membership functions can

e used to model complex partial emotions. 

. Preliminaries 

In this section, we describe deep learning for classifying senti-

ents in sentences or images. Next, we propose the equation for

emporal dependence between consecutive sentences or images.

hese features are then combined in the next section using fuzzy

ogic. 

.1. Unified input 

Given a training sample (video, text or signal) and the corre-

ponding sentiment label y ∈ { Positive, Neutral, Negative }, we trans-

orm the input into a 2D image representation with dimensions

 x × L y as follows: 

• Text: For sentences of maximum length L we represent each

word with a corresponding pre-trained vector representation of

dimension d that has been computed from co-occurrence data.

When we concatenate the word vectors of all words in a sen-

tence it results in a 2D input vector of dimension L × d . Neural

networks require that all input sentences are of equal length.

We use padding with zeros to make them all of equal length.

Since we use sliding window to extract bi-gram and tri-gram

features, it is robust to variations in sentence length. Hence, the

padded zeros are simply discarded during convolution. 
• Video: We convert videos into a sequence of images at a fre-

quency of 50 images per minute. Next, we crop the images us-

ing the face boundaries resulting in a 2D input of dimension

L x × L y . The height and width of faces varies across the sam-

ples. Hence, we used padding with zeros in order to make them

of equal dimension and also maintain the height/width ratio of

the face. This will also ensure that the height/width ratio across

different faces is not altered. 
• ECG: For the ECG signal we consider the d lead signals (col-

lected at different body parts) as the feature vectors at each

time point. We consider 512 samples spanning 3 heart beats

resulting in an input of dimension 512 × d . 

.2. Restricted Boltzmann Machines 

A Restricted Boltzmann Machine (RBM) [19] is a neural model

onsisting of two layers (known as visible and hidden layers). RBM

s trained in an unsupervised way to learn the joint probability dis-

ribution of the dataset. The state ˆ h j of the hidden neuron j , with

ias b j , is a weighted sum over all continuous visible nodes v and

s given by: 

 j = 

1 

1 + e −ˆ h j 
and 

ˆ h j = b j + 

∑ 

i 

v i w i j (1) 
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Fig. 3. Features in ‘Happy’ and ‘Sad’ faces. 
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where w ij is the connection weight to hidden neuron j from visible

node v i . The binary state h j of the hidden neuron can be defined

by a sigmoid activation function. Similarly, in the next iteration,

the binary state of each visible node v i is reconstructed. 

Lastly, the weights w ij are updated as the difference between

the original data and reconstructed visible layer labeled as the vec-

tor v recon = (v 1 , v 2 , . . . , v n ) recon for n neurons, using: 

� w i j = α(< v i h j > data − < v i h j > recon ) (2)

where α is the learning rate and < v i h j > is the expected fre-

quency with which visible unit i and hidden unit j are active to-

gether when the visible vectors are sampled from the training set

and the hidden units are determined by Eq. (1) [20] . 

3.3. Convolutional deep belief network 

The modeling power of traditional RBM remained quite limited

until it was proposed to stack many RBM in a hierarchical man-

ner giving the rise to the well-known deep belief network (DBN)

model. As proposed in [21] it is possible to create a Convolutional

RBM (CRBM) by naturally extending a traditional RBM in 2 dimen-

sions using the convolution operation. Similarly, if we stack many

layers of CRBMs, it is possible to create to a Convolutional Deep

Belief Network (CDBN), where we simply partition the hidden layer

into Z groups. 

Each of the Z groups is associated with a n x × n y kernel where

n x is the width of the kernel and n y is the height of the kernel.

It is useful to note that for text or signal input the n y = d is fixed

since it is impossible to split features of a single word or heart

sample. Fig. 3 illustrates three features learned by CDBN for senti-

ment prediction. For example, a ‘nose wrinkler’ would correspond

to ‘angry’ emotion and a ‘dimpler’ would indicate ‘happy’ emotion.

Let us assume that the input has dimension L x × L y . Then, the con-

volution will result in a hidden layer of Z groups each of dimen-

sion (L x − n x + 1) × (L y − n y + 1) . These learned kernel weights are

shared among all hidden units in a particular group. To train such

a multi-layer system, we must compute the gradient of the total

energy function E with respect to the weights in all the layers. The

energy function of layer l is now a sum over the energy of individ-

ual blocks given by: 

E 

l = −
Z ∑ 

z=1 

(L x −n x +1) , 
(L y −n y +1) ∑ 

i, j 

n x ,n y ∑ 

r,s 

v i + r−1 , j+ s −1 h 

z 
i j w 

l 
rs . (3)

In order to obtain the desired number of output features and to

flatten out all convolution filters, a softmax logistic layer is intro-

duced as last layer of the CDBN as shown in Fig. 2 . 

3.4. Recurrent neural networks 

RNNs have temporal memory and hence are ideal to model a

sequence of sentences [14] . The CDBN is not able to capture the

causality between k -grams in consecutive sentences or images s ( t )

and s (t + 1) . To overcome this limitation, we added a recurrent

layer of neurons which takes as input the n h features extracted

by the last logistic layer of the CDBN. The standard RNN output,
 l ( t ), at time step t for each layer l is calculated using the follow-

ng equations: 

 l (t) = f (W 

l 
R . x l (t − 1) + W l . x l−1 (t)) (4)

here W R is the interconnection matrix among hidden neurons

nd W l is the weight matrix of connections between hidden neu-

ons and the input nodes, x l−1 (t) is the input vector at time step

 from layer l − 1 , vectors x l ( t ) and x l (t − 1) represent hidden

euron activation at time steps t and t − 1 , respectively, and f is

he non-linear activation function. RNN are trained using standard

ack propagation through time algorithm and learns a compact

epresentation of n r features. 

. Convolutional fuzzy sentiment classifier 

In this section, we first describe fuzzy membership functions

or modeling partial emotions in sentences. Next, we describe our

roposed framework for integrating emotions into the features

earned by CDBN. The resulting model is termed Convolutional

uzzy Sentiment Classifier (CSFC). We also show that the computa-

ional complexity of the combined model is much lower than the

raditional fuzzy classifier. 

.1. Fuzzy sentiment classifier 

In this paper, we consider the variations in emotions for pre-

icting the sentiment in a sentence. Each emotion in AffectiveS-

ace can be divided into 6 sub-emotions. The emotions follow a

ormal distribution N ∼(0 , 1) . The input is four dimensional corre-

ponding to four emotions. The fuzzy classifier predicts positive,

eutral and negative sentiments using fuzzy memberships over

hese input emotions. 

The four emotional dimensions for sentence s ( t ) are, the pleas-

ntness m p ( t ), the sensitivity m s ( t ), the attention m a ( t ), and the ap-

itude m d ( t ) have uncertainties, which vary in a given range, i.e.,

 p ( t ) ∈ [ m p min , m p max ], m s ( t ) ∈ [ m s min , m s max ], m a ( t ) ∈ [ m a min , m a max ]

nd m d ( t ) ∈ [ m d min , m d max ]. It is to say that the uncertainty of the

leasantness m p ( t ) is bounded by its minimum value m p min and

ts maximum value m p max . Similarly, the other affective dimen-

ions are bounded by their minimum and maximum values. Here,

e set the input range for each emotion between G (1) = 0 . 24 and

G (1) = −0 . 24 where G ∼N (0 , 1) . This range can be divided into

ub-emotions. For example, if the value for Pleasantness dimension

s between G (2/3) and G (1/3) then the emotion is ‘Joy’ [8] . 

For illustration purpose, let us consider two affective dimen-

ions pleasantness m p ( t ), and attention m a ( t ) as defined above.

onsider the attention level for a sentence s ( t ): 

 a (t) = m a s (t) (5)

here m a represent the attention level in the sentence s ( t ), m a 

∧ ≤
 a ≤ ̂ m a , where m a 

∧ 

and 

̂ m a are the constant scalars and are

sed to constrain lower and upper bounds of the attention level.

he following three cases are considered corresponding to three

ifferent sentiment conditions: 

1. m a 

∧ = 

̂ m a = 0 ; then m a = 0 , which implies that the corre-

sponding sentiment is completely negative. 

2. m a 

∧ = 

̂ m a = 1 ; then m a = 1 , which implies that the corre-

sponding sentiment is completely positive. 

3. 0 < m a 

∧ 

< ̂

 m a < 1, which means that their exists a weak sentiment

in the corresponding sentence or it could be a neutral or factual

sentence. 

Next, we obtain the values of 1/ m p ( t ) and 1/ m a ( t ) as given in

q. (8) . We have only provided the equations for attention dimen-

ion and membership functions M 1 and M 2 . The corresponding

quations for pleasantness dimensions and membership functions
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Fig. 4. Membership functions for Pleasantness and Attention. 
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Fig. 5. State diagram of Convolutional Fuzzy Sentiment Classifier. 
 1 and N 2 can be computed in the same way. If we assume that

embership functions M 1 ( ξ 1 ( t )), M 2 ( ξ 1 ( t )), N 1 ( ξ 2 ( t )) and N 2 ( ξ 2 ( t ))

uch that: 

 1 (ξ1 (t)) + M 2 (ξ1 (t)) = 1 (6) 

N 1 (ξ2 (t)) + N 2 (ξ2 (t)) = 1 

here ξ1 (t) = 1 /m p and ξ2 (t) = 1 /m a . Then, we can get Eq. (8) . 

The range of membership functions are labeled ‘High’( m p max )

nd ‘Low’( m p min ) as shown in Fig. 4 , where ‘High’ corresponds to

ositive sentiment such as ‘Joy’ and ‘Low’ corresponds to negative

entiments such as ‘Anger’. When the membership is near 0 then

he emotion will be neutral or mixed such as in ‘Surprise’. The par-

ial membership to both the functions M 1 and M 2 such as ‘Very

ow, Low, High, Very High’ can be determined using Eq. (8) . For ex-

mple, when 1 /m p (t) = 

̂ m p is maximum as shown in Eq. (8) then

 1 = 1 and M 2 = 0 . Lastly, fuzzy blending allows us to infer the

verall fuzzy sentiment model given by Eq. (7) using rules where

 i =1:4 are the weight matrices to be learned during training. For

llustration, we have only shown Rule 1 where ξ 1 ( t ) is High and

2 ( t ) is Low. Similarly, we can create four rules for two discrete

evels of the two emotions. Eq. (8) describes Rule 1 as an example.

ach weight matrix K i is of dimension n ∗m where n is the num-

er of inputs ( = 4) and m is the number of outputs ( = 2). These

atrices are determined so that the fuzzy neural network is stable

ver time. Similar to a neural network the final output of a fuzzy

eural network is now a summation over the activation of all the

ules as follows: 

 (t) = 

4 ∑ 

i =1 

K i s (t) (7) 

.2. Convolutional fuzzy sentiment framework 

In this section, we explain the complete framework for creating

uzzy membership functions for sentiment prediction using CDBN.

e first construct a minimal CDBN with visible layer of L × d

odes, where L is length of the sentence and d is the word vector

ength; there are several hidden convolution layers of k -gram neu-

ons, then there is a penultimate hidden logistic layer of n h neu-

ons and the last layer is output neurons each class n d ∈ { + , 0 , −}
here ‘ + ’ is positive, ‘0’ is neutral and ‘ - ’ is negative review.

he n h features learned in the penultimate logistic layer of CDBN

fter training is used as the new low dimensional input data to the

NN. 

ax 
1 

m p (t) 
= 

1 

m p min (t) 
= 

̂ m p , min 

1 

m p (t) 
= 

1 

m p max (t) 

= m p 

∧ 

, M 1 (ξ1 (t)) = 

1 
m p (t) 

− m p 

∧ 

̂ m p − m p 

∧ 

, M 2 (ξ1 (t)) 

= 

̂ m p − 1 
m p (t) 

̂ m p − m p 

∧ 

Rule 1: IF ξ1 (t) is High and ξ2 (t ) is Low, THEN y (t ) = K 1 s (t) 

(8) 
Next, we construct a RNN with n h input nodes and n r hidden

eurons with time-delays. The n r features expressed at the hid-

en neurons after training: from the new input data of T samples.

astly, we project the n r features to four dimensional AffectiveS-

ace using: 

 T , 4 = s T ,n r × A 1: n r , 4 (9) 

here A is AffectiveSpace and s = (s (1) , s (2) , . . . , s (T )) is the vec-

or of sentence features. Since AffectiveSpace has 10 0,0 0 0 concepts

both single words and multi-word expressions [22] ), we perform

 dimensionality reduction to n r concepts before projection. Each

est sample is then used to generate an embedding of dimension

 h features from CDBN and then n r features from RNN and finally

lassified by the fuzzy classifier. 

To determine the number of hidden layers in the CDBN,

e compute the change in visible layer reconstruction error

 ε on the training samples. This is the root mean square er-

or between input training sample and reconstructed sample at

ach visible node. If there is a significant change in the er-

or � ε, a new hidden layer is added. The above progresses it-

ratively until additional hidden layers do not change the clas-

ification precision error significantly, and the optimal config-

ration is achieved. Following [23] , to determine the optimal

umber of hidden neurons in a single layer, we consider the

umber of components with eigenvalues above a threshold af-

er during principle component analysis. The contrastive diver-

ence approach will sample features with high frequency into

he upper layers, resulting in the formation of k -grams at hidden

eurons. 

We first construct a minimal deep CNN with visible layer of

 x × L y . The sentence model is a simple extension where L x is the

ength of the sentence L and L y is the word vector length d . The

rst hidden convolution layer of learns features of size n x × n y , sec-

nd hidden logistic layer of n h neurons and n d output neurons.

or sentences, we simply substitute n x = k and n x = d to obtain

 -gram word features. The n h features expressed at logistic layer

fter training form the new input data of T samples. Next, we con-

truct a RNN with n h input nodes and n r hidden neurons with

ime-delays. The n r features expressed at the hidden neurons af-

er training form the new input data of T samples. Lastly, we train

 fuzzy classifier with n r features and T samples. Each test sam-

le is used to generate n h outputs from deep CNN and n r outputs

rom RNN and finally classified using fuzzy logic. Fig. 5 illustrates



268 I. Chaturvedi, R. Satapathy and S. Cavallari et al. / Pattern Recognition Letters 125 (2019) 264–270 

Table 1 

Comparison of different baselines with proposed CFSC on different 

types of Dataset. 

Type Dataset Baseline (B) Acc (B) CRNN CFSC 

Text Alh CDBN [14] 76.1 80.2 91.3 

Text Mos CDBN [14] 86.3 94.4 99.1 

Text Sag CDBN [14] 82.3 88.2 95.7 

Video MOUD SVM [26] 67.2 94.1 97.4 

ECG Ami NB [5] 53.1 55.2 59.6 

CrossD B → D R3 [27] 71.1 88.4 93.5 

CrossD B → D TDN [28] 85.3 88.4 93.5 

CrossD B → D R3 [27] 71.1 88.4 93.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Four consecutive video frames (t1 to t4) in a You-Tube video. To capture 

temporal dependence, we transform each pair of consecutive images at t and t + 1 

into a single image. 
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the complete framework where features in each pair of sentences

at time t and t + 1 are combined. 

4.3. Computational complexity 

The fuzzy classifier complexity is O ( 
∑ n i 

i =1 
2 n o + 

∑ n i 
i =1 

k ) [24] ,

where n i and n o are the number of input and output feature maps

and k is the number of membership functions for each input fea-

ture. It is easy to see that a fuzzy classifier becomes very slow

with the number of input dimensions and the number of member-

ship function. Hence, in this paper we project the features learned

by CDBN to a 4 dimensional input space. Furthermore, we design

2 membership functions to model partial emotions where upper

and lower limit correspond to positive and negative respectively.

In this way, fuzzy blending can be used to create rules for com-

plex emotions. Hence, the cost of the proposed fuzzy classifier is

constant O ( 
∑ 4 

i =1 2 n o + 

∑ 4 
i =1 × 2) where n o is the number of output

classes. 

5. Experiments 

Validation of the proposed CFSC method (available on GitHub 1 )

is performed on four real-world benchmarks. Next, we discuss the

parameter setting. Lastly, we visualize the 24 sub-emotions in the

reviews. Following previous authors, we consider Accuracy 2 metric

to evaluate the models. This allows us to directly compare with

their results. 

5.1. Trip advisor text dataset 

In this section, we consider a dataset that was taken from Tri-

pAdvisor website. We scrap reviews on three well-known monu-

ments in Spain: Alhambra (Alh: 9253), Mosque of Cordoba (Mos:

4619) and Sagrada Familia (Sag: 43566). The reviews have expert

ratings from 1 to 5, where 1 is strongly negative, 2 is weakly neg-

ative, 3 is neutral, 4 is weakly positive and 5 is strongly positive. 

Hence, we consider a 5 class problem and 10 fold cross-

validation. Table 1 shows the comparison of accuracy with CDBN

and CRNN (CDBN followed by RNN), we notice over 7% improve-

ment for the Alhambra and Sagrada Familia dataset. The percent-

age improvement is highest for Sagrada Familia, hence the method

works better as dataset size increases. 

5.2. Youtube video review dataset 

For our experiment, we use the multimodal Opinion Utterances

Dataset (MOUD) dataset developed by Morency et al. [25] . They
1 http://github.com/senticnet/convolutional- fuzzy- classifier . 
2 (tp+tn)/(tp+fp+tn+fn) 

a  

C  

H  

c

tarted collecting videos from popular social media (e.g., YouTube)

sing several keywords (e.g., “favorite products”) to produce search

esults consisting of videos of either product reviews or recom-

endation. On average, each video has 6 utterances and each ut-

erance is 5 seconds long. Each utterance in a video is annotated

eparately as positive or negative. Hence, sentiment can change

uring a product review. 

Following Pérez-Rosas et al. [26] , we consider 448 utterances

abeled positive or negative. To capture temporal dependence, we

ransform each pair of consecutive images at t and t + 1 into a

ingle image. Table 1 compares the accuracy of CFSC with base-

ines. We have a marginal improvement over CRNN. However, there

s over 30% improvement over the support vector machine (SVM)

lassifier used in [26] . Furthermore, it is possible to visualize the

est images using the values of different Affective emotions. Fig. 6

hows Affective emotions in a perfume review video sequence.

ere, test images with low value of different emotions were called

weakly positive’ and images with extreme values of affective emo-

ions were labeled ‘strongly positive’. We can see that the review

s starts as negative ( t 1 and t 2) and then becomes positive at t 3

nd t 4. 

.3. Physiological signals ECG dataset 

Amigos (Ami) database contains ECG recordings from 40 sub-

ects and 16 movie clip [5] . Each clip targeted one of the follow-

ng nine emotions: amusement, excitement, happiness, calmness,

nger, disgust, fear, sadness, and surprise. To avoid contaminating

ata recordings with multiple emotions, only the recordings cap-

ured during the last 60 s of each film clip were used for analysis.

 5 s baseline recording showing a fixation cross was shown be-

ore each film clip in order to help the subject return to a neutral

motional state. 

Each participant performed an initial self-assessment for va-

ence ranging from 1 (unpleasant/stressed) to 9 (happy/elated) (see

ig. 7 ). We consider 2 leads and up to 500 samples from each lead

nd binary valence labels. In Table 1 we compare the F1 score of

FSC with baselines. We have a marginal improvement over CRNN.

owever, there is over 6% improvement over the Naive Bayes (NB)

lassifier used in [5] . 

http://github.com/senticnet/convolutional-fuzzy-classifier
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Fig. 7. Sample ECG when watching ‘Happy’ and ‘Sad’ movie clips. The horizontal 

axis in the heart-beat time stamp and the vertical axis is the electrical activity of 

the heart. 
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Fig. 8. Plot for Error Vs # Iterations for (a) Different number of neurons (b) Differ- 

ent learning rates (c) Time (secs) Vs # MF’s. 

Fig. 9. Distribution of Sub-emotions in AffectiveSpace for ‘Books’ and ‘DvD’ reviews. 

The expert rating distribution is also shown. The horizontal axis in the 6 sub- 

emotions and the vertical axis is the frequency of reviews in each sub-emotion. 
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.4. Cross domain dataset 

Lastly, we verify the effectiveness of CFSC in classifying

ubjective sentences using the multi-domain sentiment analysis

ataset [29] . Following previous authors, we first report the results

n the binary problem of classifying reviews as positive (4 or 5)

nd negative (1 or 2). The four domains consist of ‘Books’ (B), ‘DVD’

D), ‘Electronics’ (E), and ‘Kitchen’ (K) reviews, where each domain

ontains 20 0 0 reviews. Hence, as an illustration training data in

he form of 10 0 0 positive and 10 0 0 negative reviews were taken. 

We construct a cross-domain (CrossD) task of sentiment classi-

cation on this dataset. Here, 20 0 0 reviews in one domain are the

raining data and 20 0 0 reviews in a different domain are the test

ata. Table 1 shows the comparison for different methods. The pro-

osed CFSC outperforms Transfer Deep Network (TDN) [28] (85%)

y over 5% and R3 [27] (71%) by over 10% in accuracy. In TDN [28] ,

he authors considered two parallel deep auto-encoders to learn

ransferable features and classification features. However, they do

ot use convolutional neural networks; hence, they are unable to

apture the context of words. In Rule3(R3) [27] , the authors pro-

osed three rules that must be satisfied for cross-domain clas-

ification. They considered handcrafted features, instead in our

ethod we automatically learn cross-domain features. We also

ompared the performance of different modules in CFSC. Next, we

onsider the performance of only CDBN (71%) and CRNN (88%).

ence, the fuzzy classifier results in over 5% improvement. 

.5. Parameter setting 

We have used pre-trained word vectors for English. Following

revious authors, the word vector length was empirically set to

00, and unknown words were randomly initialized [30] . To de-

ermine the number of hidden neurons and layers we consider the

ean square classification error on training data. We see a signif-

cant improvement as we use up to 5 hidden layers. This is possi-

le because each layer is trained independently of the layer below,

hus there are a small number of parameters in each layer. With

ncreasing number of parameters during training the model is not

ble to generalize to unseen data. 

Here, the model over-fits to the training data and the accu-

acy on new test data is low. If we train each layer independently,

hen the complexity of the model is low and hence over-fitting is

voided. Since fuzzy classifier is able to model the uncertainties in

he data, extensive parameter tuning was not required. Each sim-

lation takes about 10 min to complete. Our best results are ob-

ained with an ensemble of CFSC 10-fold cross-validation that dif-

er in their random initialization and mini-batches of 100 samples.

In Fig. 8 , we can see that the model is robust to small changes

n parameters for predicted Emotions in ‘Books’ to ‘DvD’ classifier.

o measure the stability of the model to parameters we consider

he reduction in error with each iteration of training. For exam-

le, in Fig. 8 (a) when we increase the number of neurons in all
he hidden layers form 10 to 15 the error curve does not change

ignificantly. Similarly, in Fig. 8 (b), if we change the learning rate

rom 0.01 to 0.1 there is only a slight change in the error curve.

astly, we can see that our model with two membership functions

MF) is exponentially faster than a model with three or more MF’s.

.6. Visualization of fuzzy emotions 

Fig. 9 shows the distribution of predicted Emotions in ‘Books’

nd ‘DvD’ reviews using a fuzzy classifier. For each emotion in Af-

ectiveSpace, we plot the number of reviews in each of the six sub-

motions define in [8] . 

The expert rating distribution has the highest number of re-

iews with rating 4 (strongly positive). However, if we look at the

ighest frequency of emotions, for Pleasantness and Sensitivity the

motions are slightly negative and for Attention and Aptitude they

re only slightly positive. Hence, by looking at the sub-emotions,

e can understand the dataset better and the expert rating may in

act be incorrect in judging the true emotions of users. 

. Conclusion 

In this paper, we have proposed a sentiment classifier based on

motions that is able to predict sentiments in video and text se-

uences. Our simulation and experimental study showed that the

roposed CFSC outperformed the baseline methods in classification

ccuracy. The method was also able to visualize 24 different emo-

ions in test samples. We observed an improvement in the range

f 10–20% in accuracy. 

Unlike traditional LSTM, which models every word with a sin-

le neuron, in this paper we use a low-dimensional RNN to classify

oncepts learned via deep learning. By projecting temporal features

nto AffectiveSpace, we are able to interpret the features learned.

astly, we take into account that most sentences have mixed emo-

ions such as sarcasm that can only be modeled effectively using

uzzy membership functions. Hence, we predict the final accuracy

f the classifier using fuzzy blending over each pair of simple emo-

ions. 
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