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Abstract

Human conversations are guided by short-term and long-
term goals. We study how to plan short-term goal sequences
as coherently as humans do and naturally direct them to
an assigned long-term goal in open-domain conversations.
Goal sequences are a series of knowledge graph (KG) entity-
relation connections generated by KG walkers that traverse
through the KG. The existing recurrent and graph attention
based KG walkers either insufficiently utilize the conversa-
tion states or lack global guidance. In our work, a hierarchical
model learns goal planning in a hierarchical learning frame-
work. We present HiTKG, a hierarchical transformer-based
graph walker that leverages multiscale inputs to make precise
and flexible predictions on KG paths. Furthermore, we pro-
pose a two-hierarchy learning framework that employs two
stages to learn both turn-level (short-term) and global-level
(long-term) conversation goals. Specifically, at the first stage,
HiTKG is trained in a supervised fashion to learn how to plan
turn-level goal sequences; at the second stage, HiTKG tries to
naturally approach the assigned global goal via reinforcement
learning. In addition, we propose MetaPath as the backbone
method for KG path representation to exploit the entity and
relation information concurrently. We further propose Multi-
source Decoding Inputs and Output-level Length Head to
improve the decoding controllability. Our experiments show
that HiTKG achieves a significant improvement in the perfor-
mance of turn-level goal learning compared with state-of-the-
art baselines. Additionally, both automatic and human eval-
uation prove the effectiveness of the two-hierarchy learning
framework for both short-term and long-term goal planning.

Introduction
Building a human-like dialogue system has been a long-
lasting goal in the community of conversational AI (Ni et al.
2021; Ma et al. 2020). In the pursuit of this goal, multi-
ple research topics have emerged: context awareness (Qiu
et al. 2020), response coherence (Liu et al. 2019a) and di-
versity (Su et al. 2020), speaker consistency (Madotto et al.
2019), empathetic response (Song et al. 2019), conversation
topic (Wu et al. 2019), knowledge-grounded system (Chen
et al. 2020), etc. Conversation goal is one of the most repre-
sentative elements that reflect human intelligence.
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belong toI love the grilled fish sooooo much! 

Yeah. it's a famous Chinese dish.

Really? I would say I love China then!

Haha, there's lots of Chinese food in China 
Town, do you want to have a try?

For sure! That sounds great!

A cinema named Golden Village is nearby, 
how about watching a movie after dinner?

Cinema

global goal

Grilled Fish

Chinese Dish

China Town

Cinema

exist in
is near

A

B

C

B

Figure 1: A goal-driven dialogue sample. Starting from an
initial entity (A), the chatbot plans turn-level conversation
goals (B) based on dialogue content and history goal trajec-
tory, also trying to naturally direct B to a global goal (C).

Human conversations are usually guided by several small
goals or a global goal. As shown in Fig. 1, Grilled Fish,
Chinese Dish, China Town, and Cinema are turn-level goals,
while the Cinema is also the global goal at the same time.
During the conversation, the agent intends to approach the
global goal by naturally transitioning between turn-level
goals. However, most dialogue systems passively respond
to the user without explicit goals, causing incoherent or il-
logical responses. In recent years, some researchers attempt
to ground dialogue systems on knowledge graphs (KGs) to
actively guide conversation topics/goals. KG is a structured
knowledge network that consists of vertices, or entities, be-
ing connected by edges, or relations (Ji et al. 2022).

KGs contain commonsense relationships between real-
world entities that can also be seen as conversation goals.
Generating or retrieving responses according to the walking
trajectory in KGs is effective in generating goal-oriented re-
sponses. The current graph walkers can generally be divided
into recurrent walkers (Young et al. 2018; Zhang et al. 2019;
Moon et al. 2019; Li et al. 2022) and graph attention based
walkers (Jung, Son, and Lyu 2020). Recurrent walkers de-
code KG paths depending on a fixed-length vector, which
creates a bottleneck for the performance.
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Graph attention based KG walkers are good at achiev-
ing an overall optimal since they reserve all potential paths,
but such mechanism is too high in computation complex-
ity to be scalable to multi-hop reasoning. In addition, these
walkers neglect the hierarchical structure of the input source
and make separate predictions for entity and relation paths,
which affects their performance. Besides, these walkers only
plan turn-level goals based on the dialogue history, which
means that their reasoning is local and undirected. How-
ever, many of the conversations between humans, especially
adults, are guided with an ultimate goal.

To this end, we propose Hierarchical Transformer based
Knowledge Graph Walker (HiTKG), a graph walker that
leverages multiscale inputs to make precise and flexible pre-
dictions on KG paths. We learn this hierarchical model in
a two-hierarchy learning framework which employs two
stages to learn goal planning. In the first stage, we train
HiTKG in a supervised fashion, where it learns how to plan
turn-level conversational goal sequences naturally based on
the dialogue content; in the second stage, we manually as-
sign a global goal for HiTKG and it learns to approach the
global goal via reinforcement learning, where a user simu-
lator is trained to provide user messages for the conversa-
tion. In other words, in such two-stage learning, the model
learns to approach the target goal without losing the nat-
uralness of the goal sequence. Specifically, HiTKG has a
transformer-based structure, as shown in Fig. 2. The graph
decoder computes hierarchical attention with different-level
memories to obtain a better representation of current states,
based on which it reasons over the multihop neighbors and
decodes a KG path consisting of the related entities and rela-
tions. Note that our model is scalable to KG paths of flexible
lengths. To conclude, our contributions are as follows:

• We propose the first transformer-based KG walker that
attentively reads multiscale inputs for graph decoding.
We also propose Multi-source Decoding Inputs (MDI)
and Output-level Length Head (OLH) to strengthen con-
trollability of the Hierarchical Attention based Graph De-
coder (HAGD).

• We propose a two-hierarchy learning framework to train
the proposed hierarchical KG walker, in order to learn
both turn-level and global-level conversation goals. This
is the first attempt to learn models to make natural transi-
tions towards the global goal in KG, where we propose a
distance embedding to incorporate distance information.

• We propose MetaPath (MP) to concurrently exploit en-
tity and relation information when reasoning, which is
proved essential as the backbone method for KG path
representation, providing a paradigm for KG reasoning.

Method
Overview
We define the knowledge graph GKG = VKG × EKG,
where the KG is composed of the commonsense vertices
(entities) VKG and edges (relations) EKG that connect the
vertices. We define VE,n(v) as the set of nodes that are con-
nected to v with n-hop edge connections E.

There are two learning stages for the model to learn dif-
ferent levels of goal planning: turn-level goal learning (stage
1) and global-level goal learning (stage 2). Specifically, at
stage 1 (supervised learning), the model takes the multiscale
state x as input, and predicts an n-hop KG path Yp which
represents the transition of conversation goals. The KG path
is made up of the entities and relations in GKG. x has two
scales: x = {xp;xd}, where xp = {x(1)

p ,x
(2)
p , ...,x

(i)
p } de-

notes KG path history with a fixed window size i that is gen-
erated in previous turns; the xd = {x(1)

d ,x
(2)
d , ...,x

(j)
d } de-

notes dialogue history utterances with a fixed window size j
that is produced by both speakers. The KG path inference at
the t-th dialogue turn of stage 1 is formulated as:

Yt
p = argmax

Y

T∏
k=1

P (vt
k|xt

p,x
t
d,VE,1(v

t
k−1)) (1)

Where Yt
p = {vt

1,v
t
2, ...,v

t
T } denotes the predicted T -hop

KG path. vt
k = [vtk−1, e

t
k, v

t
k] denotes the k-th one-hop KG

path of Yt
p. vtk−1 ∈ VKG denotes the starting KG vertex

of vt
k, and etk ∈ EKG denotes the edge that connects vtk−1

and vtk. At stage 2 (supervised and reinforcement learning),
x is composed of three scales: x = {xp;xd;g}, where g
denotes global goal. The model takes x as input to predict
turn-level KG path vt

y,k, and tries to make the entity of vt
y,k

closer to g. Since no n-hop KG path annotation is available
at this stage, we predict one-hop paths here to analyze the
problem. The KG path inference at stage 2 is formulated as:

vt
y,k = argmax

vt
k

P (vt
k|xt

p,x
t
d,g,VE,1(v

t
k−1)) (2)

Multiscale Source Representation
The KG path is a series of conversation goals based on which
the utterances are organized. We argue that dialogue his-
tory is the surface-level representation of a dialogue and
KG path history is a higher level one that can be inter-
preted as the outline of a conversation. At stage 2, the global
goal is the top-level input source that decides the topic flow.
As shown in Fig. 2, HiTKG encodes multiscale dialogue
sources with separate transformer encoders, where MetaP-
ath is the cornerstone of KG path representation and reason-
ing. The global goal is represented as a part of the decoder
input.

MetaPath (MP) In previous works such as (Moon et al.
2019) and (Jung, Son, and Lyu 2020), entities and relations
are represented separately in both KG path encoding and de-
coding. At the decoding stage, KG paths are predicted by
scoring entity paths and relation paths respectively, and then
rerank. Thus, the model only considers one distribution of
the entities or relations at a time, while a KG triple is com-
posed of both. The prediction quality is decided by entity
path reasoning, relation path reasoning, and reranking al-
gorithm jointly, which makes it harder to achieve optimum.
We propose MetaPath, an effective method to represent and
score the KG paths by concurrently considering the entity
and relation information. A MetaPath is a flexible combina-
tion of embeddings.
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Turn-level goal learning (stage 1)

Global-level goal learning (stage 2)

ALBERT

Sushi is a famous Japanese dish.

Well, not really into it due to its calories.

[Japanese Dish  category of  Sushi]

[Sushi  have main ingredient  Rice]
[Rice  is low in  Carbohydrate]

Really? That's amazing!

[Carbohydrate  stimulate  Insulin]
[Insulin  promote synthesis of  Fat]

[Carbohydrate barely exist in Vegetable]
[Vegetable is served in iVegan]

Why? Rice is the main ingredient of 
Sushi, which is low in carbohydrate.

Global goal: iVegan

Dialogue History

KG

MP (base) OLH Dis

iVegan

1
2

1

2

Global goal: None

relation entity

Multiscale Encoding

Memories

HAGD

Path Dis a b c

S1

S2MDI

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Attention

Attention

αself

a b c

SoftmaxSoftmax

O

Attention

HiTKG

Two-hierarchy Learning

Feed Forward

cls

cls Goal

Target MPs

Decoded MPs

Mask

Zero-shot scoring

Dot Product

Figure 2: The overall architecture. HiTKG is composed of multiscale encoders and the Hierarchical Attention based Graph
Decoder (HAGD). It first employs two separate transformers to learn dialogue history and KG path history representations, and
then HAGD leverages the multiscale memories to plan KG paths. HiTKG has different reasoning strategies when trained with
stage 1 only and with both stages. We optimize the whole HiTKG during training. Note that our task only predicts KG paths.

Given a KG triple (v1, e,v2), a base MP contains the con-
catenated embeddings of e and v2: MP=[⃗ee; e⃗v2

]. Where
e⃗e, e⃗v2

∈ Rdkg , dkg denoting the KG embedding dimen-
sion. Although v1 is not included, the MP still expresses
the full triple, benefiting from the base graph embedding.
MP=[⃗ee; e⃗v2 ] instead of [⃗ev1 ; e⃗e; e⃗v2 ] because the later form
causes information redundancy when encoding KG path his-
tory with multiple MPs (each entity appears twice), caus-
ing worse convergence during training. As the cornerstone
of KG path reasoning, MP also decides the scoring logic,
bringing high efficiency, accuracy, and flexibility.

KG Vertex & Edge Following previous KG walkers, we
use TransE (Bordes et al. 2013) to represent the vertices
and edges of GKG. TransE is a simple but powerful graph
embedding method that is scalable to large KGs and repre-
sents multi-scale relationships. The main idea is that given a
ground KG triple (v1, e,v2), it satisfies e⃗v1+ e⃗e ≈ e⃗v2 . The
MetaPath and TransE form an ideal combo because accord-
ing to the principle e⃗v1 + e⃗e ≈ e⃗v2 , the embedding of v1 can
be inferred by the model given e and v2, which makes up the
information loss for a single MP (no loss for MP sequences).

Dialogue History Dialogue history is composed of the
conversations from past turns and has a fixed window
size. The conversation sentences are first encoded with
an ALBERT1 (Lan et al. 2019) layer ϕal, which is
frozen during training, to obtain contextual representation
ed = ϕal(xd) = {e⃗(1)d , e⃗

(2)
d , ..., e⃗

(nd)
d }. Memory hd =

{h⃗(1)
d , h⃗

(2)
d , ..., h⃗

(nd)
d } is obtained by parallelly applying

1A state-of-the-art contextual representation model. It achieves
better performance than BERT-large with fewer parameters.

hd = Edial(ed). Where Edial is composed of learnable po-
sitional embedding (Wang and Chen 2020), multi-head at-
tention αn (Vaswani et al. 2017), and feedforward network
(FFN) (we simplify multihead attention and omit bias terms,
and illustrate only one transformer layer for conciseness):

Edial(ed) = ψ(αself (e
pos
d ) +W2σ(W1αself (e

pos
d )))

αself (e
pos
d ) = αn(ẽ

pos
d |ēposd )

(3)
Where eposd denote the position-embedded inputs. ēposd de-
notes attention query and ẽposd denotes attention key/value.
ψ denotes layer normalization (Ba, Kiros, and Hinton 2016).
W1 ∈ Rdm×df and W2 ∈ Rdf×dm are the weight matri-
ces of FFN, where dm and df denotes the model and FFN
dimension, respectively. We add [usr1] and [usr2] in front
of respective messages to identify the utterances from dif-
ferent speakers, which has been proved effective in dialogue
tasks (Quan and Xiong 2020).

KG Path History TransE-based MetaPath transformation
is denoted as φmp. We stack all MPs corresponding to their
respective one-hop KG paths to represent KG path history
xp. A starting MetaPath MPbop=[⃗ebop; e⃗1st] is placed at the
beginning. e⃗bop is a special token embedding indicating the
beginning of path and e⃗1st is the starting entity embedding
of xp. The MPbop ensures that all entities of the original KG
path history are presented and indicates the starting point.
Ekg further aggregates the MP representations of path his-
tory ep = φmp(xp) = {e⃗(1)p , e⃗

(2)
p , ..., e⃗

(np)
p } to get memory

hp = {h⃗(1)
p , h⃗

(2)
p , ..., h⃗

(np)
p } by applying hp = Ekg(ep),

where Ekg has the same architecture as Edial.
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Global Goal The global goal g is an entity of GKG that is
manually or randomly selected. At the stage of global-level
goal learning, the global goal is a significant source of input,
while it is not required when learning the turn-level goals.
Considering that stage 1 and stage 2 share the same model,
they need to keep the same input forms. Thus, we put the
global goal in front of the target sequence, jointly as an input
of the graph decoder. At stage 1, we use a target mask to
mask out the global goal embedding when computing self-
attentions for decoder inputs.

Turn-level Goal Learning
We propose Hierarchical Attention based Graph Decoder
(HAGD) to predict turn-level KG paths and train it in a su-
pervised fashion. Given KG environment Vtar

e of the target
sequence, graph decoder ξ decodes KG paths:

yp = ξ(Sa,hd,hp||Vtar
e ) (4)

Sa = [⃗c; e⃗gm; t] denotes turn-level Multi-source Decoding
Inputs (MDI), which aggregates static and dynamic states
for ξ, being the top level of multi-scale sources. c⃗ ∈ Rdm is
the corresponding cls embedding of OLH. e⃗gm ∈ Rdm de-
notes masked global goal embedding (padded). t ∈ Rns×dm

is the shifted right target sequence starting with MPbop.

Multi-hierarchy Attention Block ξ has three scales of
sources: MDI, dialogue history and KG path history memo-
ries, being denoted as Sa, hd, and hp, respectively. We build
a multi-hierarchy attention block to aggregate the multiscale
information. Specifically, the proposed HAGD has three at-
tention layers αself , αkg , and αdial that align with MDI, KG
path history, and dialogue history, respectively:

κtops = τ(αself (S
pos
a )) = τ(αn(S̃

pos
a |S̄pos

a ))

κmid
p = τ(αkg(hp|κtops )) = τ(αn(h̃p|κ̄tops ))

κbotd = τ(αdial(hd|κmid
p )) = τ(αn(h̃d|κ̄mid

p ))

(5)

τ denotes the residual operation τ(y(x)) = x + y(x). A
self-attention layer αself computes attention over the top-
level source MDI; the resulting context vectors κtops =

{κ⃗tops,1 , κ⃗
top
s,2 , ..., κ⃗

top
s,ns

} interact with hp at the middle layer
αkg; then taking the resulting residual state κmid

p = {κ⃗mid
p,1 ,

κ⃗mid
p,2 , ..., κ⃗

mid
p,ns

} from αkg , αdial leverages hd and obtain
κbotd = {κ⃗botd,1, κ⃗

bot
d,2, ..., κ⃗

bot
d,ns

}. κ⃗tops,k , κ⃗mid
p,k , and κ⃗botd,k ∈ Rdm .

Output-level Length Head (OLH) Humans have a gen-
eral estimation about how long should the goal trajectory be
when they plan the conversation goals, though this could be
subconscious. To this end, we place a cls token at the be-
ginning of decoder input and attach the corresponding OLH
to the output layer for path length prediction. The output
O = [⃗cι; g⃗ι; tι] has the corresponding shape of S. c⃗ι is the
OLH state representation for KG path length prediction; g⃗ι

is a placeholder; tι is the KG path state representation. We
compute path length distribution yl as follows:

yi
l =

exp(ciι)∑N
k=1 exp(c

k
ι )

(6)

Where ckι ∈ R. This multi-task learning framework pre-
dicts path length and KG paths concurrently and achieves
improvement in the performance of KG path prediction.

Zero-shot Scoring Note that different from traditional
language models, the total number of candidates M is not
fixed at different path positions n. Thus, given the path state
representation tι, we compute the zero-shot embedding sim-
ilarity to score the paths:

yn,j
p =

exp(⃗tnι · π⃗j
n)∑M

k=1 exp(⃗t
n
ι · π⃗k

n)
(7)

Where Πn = {π⃗1
n, π⃗

2
n, ..., π⃗

m
n } denotes a set containing

neighbor MP candidates of the n-th node in a KG path and
the end of path embedding MPeop. π⃗k

n ∈ Rdmp denotes the
k-th MP candidate of Πn. We compute Cross Entropy loss
of length and KG path prediction to optimize HiTKG:

Lsup = γLCE(yl, ŷl) + λLCE(yp, ŷp) + ϵ
∑
w

w2 (8)

Where ŷl and ŷp denote the ground truth path length and KG
path, respectively. γ and λ are weight coefficients. ϵ

∑
w w

2

is the weight decay term.

Global-level Goal Learning
We propose a reinforcement KG walker HiTKG-RL, which
has the same architecture as HiTKG, to walk on the GKG

under the guidance of a global goal. This learning stage can
be viewed as the combination of a pretrain stage (generally
the same as stage 1) and a fine-tune stage where we apply a
reinforcement framework to teach the pretrained KG walker
how to approach the global goal without losing naturalness.

User Simulation We train a user simulator to generate
user responses as dialogue history when interacting. The
user simulator has the same architecture as the KG walker,
which takes the dialogue history and KG path history as
input sources. The decoder input sequence Susr = [v⃗c; t]
is different from that of the KG walker, where v⃗c denotes
the KG vertex of current turn. Instead of predicting the KG
paths, the decoder output is modified to predict the probabil-
ity distribution over a fixed vocabulary set to generate human
responses. The dialogue history is solely composed of the
simulated responses. Omission of the second speaker’s re-
sponse barely influences the overall performance of KG path
reasoning, which is indicated by an ablation experiment.

Distance Embedding To measure how close the current
node is from the global goal entity, a distance metric is re-
quired. We directly use the graph distance2 as the distance
metric since the dot product of TransE embeddings does not
provide good estimations of distances when the vertices are
far away from each other. We traverse the graph to obtain
a distance matrix D between all vertex pairs and then per-
form matrix factorization to get two low-dimensional matri-
ces. Given a vertex, we retrieve the vector at the correspond-
ing position as its distance embedding e⃗d.

2The minimum length of the paths connecting two vertices.
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Policy The policy model HiTKG-RL has the same ar-
chitecture as HiTKG, while the MetaPath is modified:
MPrl=[⃗ee; e⃗v; e⃗d], in order to incorporate the distance infor-
mation. To maintain the same MetaPath structure between
stage 1 and 2, we conduct the turn-level goal learning at
stage 2 with MPrl instead of MP (HiTKG performs best
with MP at stage 1). The encoder and decoder inputs con-
stitute the observable states. HiTKG-RL predicts a one-hop
KG path at each step and tries to approach the global goal.
We employ A2C3 (Mnih et al. 2016) to optimize the model.

Reward At the t-th turn, we directly obtain the distance
of two vertices dt(v1,v2) from D and estimate the reward
based on this. If dt(veop,g) < dt−1(veop,g), then the re-
ward is set to 1, otherwise the reward is 0. veop denotes
the ending entity of the path predicted. Currently, due to the
lack of automatic KG path evaluation metrics, we use the
distance as the only criteria. The future work will introduce
more evaluation criteria of KG paths such as the naturalness.

Experiments and Results
Dataset
We conduct our evaluation on OpenDialKG (Moon et al.
2019). It is a dialogue - KG dataset where each utterance of
a dialogue is annotated with a KG path, which enables learn-
ing graph walkers to reason over the KG based on the con-
versations. It consists of 15K dialogues and 91K turns. Each
dialogue is produced by two crowd-workers and grounds in
a given topic. We follow the baselines and split it into train
(70%), dev (15%), and test set (15%).

Experimental Settings
Baselines To evaluate the stage 1 learning, we compare
our results with six baseline models. However, we do not
benchmark against previous work to evaluate the stage 2
learning, since we can hardly find any similar work, or re-
lated codes are not available.

Generally, the six baseline models can be divided
into breadth-centric and depth-centric models. Tri-
LSTM (Young et al. 2018) is a breadth-centric model that
augments its dialogue inputs with wide-ranging shallow KG
facts to retrieve short KG paths. The other five baselines
and HiTKG are depth-centric models which focus on a
small set of KG entity-relation connections and perform
deep reasoning over the KG. Among them Seq2Seq and
DialKG Walker were proposed in (Moon et al. 2019), while
Seq2Path, AttnFlow and AttnIO were proposed in (Jung,
Son, and Lyu 2020).

Implementation Details The MetaPath is the basic com-
ponent of KG path representations, while we perform mod-
erate modifications under different situations. When encod-
ing an n-hop KG path history wherein the one-hop KG path
components are in series connections, a starting MetaPath
MPbop=[⃗ebop; e⃗1st] is added to the beginning to indicate the
starting point in KG.

3A2C replaces the Q value of Actor-critic’s gradient with the
expected advantage and the learning process is more stable com-
pared with policy gradient methods.

In contrast, at the graph decoding stage, when predicting
probability distribution over the one-hop neighbors of the
current entity, MPbop is not required, since all of the paths
start from the current entity and they are in parallel relation-
ships. In addition, stage 1 and 2 use MetaPaths of differ-
ent structures, as stated in Section . We use Pytorch (Paszke
et al. 2019) to implement our model, which is trained on
two RTX 8000 GPUs. We tune the hyperparameters by grid
searching the hyperparameter space and choose the follow-
ing settings that perform best: number of encoder/decoder
layers: 2/6; dimension of the KG walker: 768; dimension of
the KG embedding: 384 (stage 1), 256 (stage 2); loss coeffi-
cients γ/λ: 0.1/0.9; number of attention heads: 12; learning
rate: 10−3; dropout rate: 0.1; L2 regularization parameter
ϵ: 10−5; batch size: 10. We use learning rate scheduler to
tune the learning rate manually and patient & early stopping
to avoid overfitting. In addition, we use gradient clipping to
avoid gradient explosions.

Evaluation
Results The turn-level goal planning performance of base-
line models and HiTKGs are presented in Table 1. Follow-
ing the baselines, we use recall@k as the evaluation metric
of path-level (path@k) and target entity-level (tgt@k) cor-
rectness. HiTKG outperforms all baselines we benchmark
against in both path@k and tgt@k, with two metrics worse
than the ablation models. The performance gain is signifi-
cant, especially in recalls with larger k: there is a 13% rela-
tive improvement in path@25 and 9% in tgt@25. As illus-
trated in Section , at the second learning stage, we use a dif-
ferent MetaPath structure to represent the KG paths and KG
neighbors for both the supervised and reinforcement learn-
ing. Thus, we also report the performance of turn-level goal
planning at stage 2. HiTKG-RL is designed for reinforce-
ment learning, while it shows comparable performance with
HiTKG when trained in a supervised fashion, even outper-
forming in tgt@3. This result indicates that the introduced
distance embedding does not significantly influence the per-
formance of turn-level goal planning at stage 2.

Tri-LSTM, Seq2Seq, Seq2Path, and DialKG Walker are
recurrent graph walkers, which deliver history information
with a fixed-length vector. The use of a fixed-length vec-
tor creates a performance bottleneck in KG reasoning and
these recurrent baseline models show at least 42.59% lower
performance than HiTKG in path@1. In addition, recur-
rent units suffer from short memories, restricting the per-
formance in long KG path predictions. Trajectory is a good
form to represent dynamic information and we leverage dia-
logue history and KG path history as two trajectory sources
for goal planning. Most of the baselines omit the KG path
history and only learn utterance patterns for KG walking.
However, KG path history records the KG trajectory up to
the previous turn and is an important guide to a KG walker,
e.g., the model knows which paths have been walked in pre-
vious turns, which avoids or reduces repeated attempts. Di-
alKG Walker and AttnIO are two state-of-the-art KG walk-
ers. The recurrent architecture of DialKG Walker limits it-
self in feature representation, which causes its comparatively
low performance, especially in recalls with small k.
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Model Recall@k
path@1 path@3 path@5 path@10 path@25 tgt@1 tgt@3 tgt@5 tgt@10 tgt@25

Tri-LSTM 3.2 14.2 22.6 36.3 56.2 - - - - -
Seq2Seq 3.1 18.3 29.7 44.1 60.2 - - - - -

DialKG Walker 13.2 26.1 35.3 47.9 62.2 - - - - -
Seq2Path 14.92 24.95 31.1 38.68 48.15 15.65 27.04 33.86 42.52 53.28
AttnFlow 17.37 24.84 30.68 39.48 51.4 18.97 36.23 45.48 58.84 71.35
AttnIO 23.72 37.53 43.57 52.17 62.86 24.98 43.78 53.49 65.48 78.79

HiTKG - 2EMP 24.16 37.01 46.78 58.12 67.83 30.01 43.22 55.19 66.73 85.36
HiTKG - DK 24.55 38.01 48.02 58.17 70.39 30.89 43.92 53.68 71.01 85.26
HiTKG - W2 25.82 38.56 48.63 57.93 71.25 30.99 46.29 55.91 70.88 85.15

HiTKG - WLH 24.49 37.31 49.10 58.22 70.12 30.13 43.29 54.76 70.16 85.52
HiTKG - SP 23.98 35.21 39.29 53.25 66.81 25.02 45.15 50.52 63.77 80.31

HiTKG-RL 25.12 36.55 45.67 56.37 69.18 30.99 46.67 54.16 67.20 85.19
HiTKG 25.99 38.67 49.18 59.32 71.27 31.11 46.29 55.59 71.61 86.09

Table 1: Path-level (path@k) and target-level (tgt@k) performance of supervised KG path reasoning at stage 1 ( metric:
recall@k). HiTKG is benchmarked against several state-of-the-art baselines and ablation models on the OpenDialKG dataset.

Besides, when computing the context vector at the de-
coding stage, it needs to compute attention scores over the
whole relation space, which can be computationally expen-
sive and may affect the quality of the resulting context vec-
tor. AttnIO computes an incoming attention flow to represent
entities and an outgoing attention flow to select KG paths.
This design ensures an optimum path at the decoding stage
because it reserves all potential paths at each step. However,
to predict a T -hop path where each node has N neighbors
on average, the computation of outgoing attention flow has
a complexity of O(NT ), which is not scalable to long KG
path predictions. In addition, all baseline models separately
deal with the entity and relation paths, which breaks the se-
mantic structure of KG paths.

Ablation Study We conduct five ablation studies as re-
ported in Table 1. (1) First, we experiment with the 2-entity
MetaPaths (2EMP) where MP=[⃗ev1

; e⃗e; e⃗v2
]. The perfor-

mance degradation suggests that the redundancy of entity in-
formation harms the training. (2) Next, the encoder-decoder
attention layers αkg and αdial are swapped (DK). Placing
the layer αkg in front of αdial outperforms the reversed con-
dition, which implies that it is more reasonable to select low-
level information (dialogue history) with a higher one (path
history), demonstrating a better way to compute hierarchi-
cal attention. (3) We test the performance of supervised path
learning without the utterances from speaker 2 (W2). We
find that, although performance is slightly degraded, results
are still comparable, even higher than the standard setting in
tgt@5. We infer that this is because given speaker 1 (user)
and speaker 2 (agent), speaker 2 will pay more attention to
the utterances from speaker 1 instead of his own for goal
planning. In addition, the KG path history contains most
of the essential information in the utterances from speaker
2. (4) To investigate the contribution of OLH, we train the
KG walker without it (WLH) and this causes performance to
drop 1-2%. (5) The fifth ablation model separately predicts
entity and relation paths (SP), using both distributions for
one-hop KG path reranking at each decoding step. A drop in
performance suggests the contribution of MetaPath, which
concurrently considers entity and relation information.

Model
Distance (%)

3 5 7 9 11
HiTKG 2 0 0 0 0

HiTKG-RL 66 27 11 2 0

Table 2: The success rate of reaching the global goal entity.

Model Naturalness Semantic Closeness
1st 2nd 3rd 4th 1st 2nd 3rd 4th

SP 9 5.8 18.2 67 41 33.8 10.2 15
GT 39.2 27.8 24 9 12.6 17.2 39.8 30.4
Hi 32.6 43.2 18 6.2 7 11.8 41.2 40

Hi-RL 19.2 23.2 39.8 17.8 39.4 37.2 8.8 14.6

Table 3: Ranking results of the semantic closeness between
ending node and global goal, and the path naturalness. The
results are presented as the number of instances a certain
model is ranked as a certain ranking (averaged).

Success Rate Whether the agent can reach the global goal
entity is a natural way to evaluate whether stage 2 works. For
each case, we randomly select a beginning node v1st and a
target global goal g which has a graph distance of 3/5/7/9/11
from v1st. We report and compare the success rate of 100
independent attempts by HiTKG and HiTKG-RL, respec-
tively, as shown in Table 2. The HiTKG is only trained at
stage 1 while HiTKG-RL undergoes both stages. It is indi-
cated that without global goal guided training, the HiTKG
can barely succeed (only 2 cases succeeded by chance).
Whereas HiTKG-RL has a 66% success rate at distance 3
and declines as the distance rises. The decline is partially
ascribed to the trade-off between naturalness and success.

Human Evaluation We aim to plan natural turn-level
goals at stage 1, while at stage 2 we aim to approach the
target without losing naturalness. We conduct human evalu-
ation to further evaluate the path naturalness of both stages
and the approaching effectiveness of stage 2. We sample
100 2-hop KG paths from Shortest Path (SP), Ground Truth
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Conversation P1: Fiona Stafford wrote Emma. It’s a ro-
mance novel. Are you into that genre?
P2: Any other books that might fall under
comedy? I’m in the mood for something light.
P1: [response]

GT ([BOP], Comedy) → (genre of, One Crazy
Summer)

AttnFlow ([BOP], Comedy) → (parent genre, Slap-
stick)

AttnIO ([BOP], Comedy) → (subject of, The War of
the Worlds) → (written by, Arthur. C. Clarke)

HiTKG
(WLH)

([BOP], Comedy) → (genre of, Slacker) →
(release year, 1991)

HiTKG ([BOP], Comedy) → (genre of, One Crazy
Summer)

Table 4: Comparison of KG paths generated from models
trained at stage 1 under a context (including ground truth).

(GT), HiTKG (Hi), and HiTKG-RL (Hi-RL), respectively,
and combine them into 100 four-tuples where each path tu-
ple corresponds to a certain starting entity v1st in OpenDi-
alKG and global goal g which is 3 units away from v1st.
Each path starts from v1st and does not reach g. SP de-
notes the shortest paths from v1st to g. Hi is only trained
at stage 1 while Hi-RL undergoes both stages. Five human
evaluators independently rank the four paths in each tuple
regarding the path naturalness and the semantic closeness
between the ending node and global goal. As shown in Ta-
ble 3, GT and Hi paths show dominance in top rankings of
naturalness, which indicates the effectiveness of stage 1; Hi-
RL paths have significantly more instances than SP in top
naturalness rankings, indicating that Hi-RL reserves natu-
ralness when learning to approach global goal (comparing
with Hi, it sacrifices some naturalness to approach the tar-
get). Hi-RL paths rank the first in 39.4% closeness rankings,
only second to the SP. It indicates that Hi-RL effectively ap-
proaches the target in semantic space when reasoning over
the KG.

Case Study Table 4 presents the example KG path predic-
tions from models trained at stage 1 under the same con-
versational context in (Jung, Son, and Lyu 2020). With the
starting entity Comedy, the proposed HiTKG predicts pre-
cisely in both content and length. In contrast, the baseline
models tend to select paths that are different from the ground
truth, which lacks naturalness and may not fit the context. In
addition, we also showcase the output of an ablation model
which predicts without the OLH. The generated path is not
consistent in length compared with the ground truth.

We compare how KG walkers choose one-hop paths given
a global goal, as shown in Table 5. At the node Beatrice and
Virgil, there are three candidate paths to select, which ends
with entities that are 1/3/3 units away from the global goal
An American in Hollywood. In general, the walker trained
with both stages tends to choose the entity that is the closest
to the target, in both topological and semantic spaces.

Conversation P1: Do you have books by Yann Martel?
P2: He wrote Life of Pi and Beatrice and
Virgil. Have you read either of those?
P1: [response]

Candidates (in language, English) [d=1]; (release year,
2010) [d=3]; (written by, Yann Martel) [d=3]

Global Goal An American in Hollywood
HiTKG ([BOP], Beatrice and Virgil) → (release year,

2010)
HiTKG-RL ([BOP], Beatrice and Virgil) → (in language,

English)

Table 5: Comparison of KG path selections among neighbor
candidates under global goal guidance and a given context.

Related Work
KG-grounded dialogue systems. Some work augments
dialogue inputs with shallow entity and relation informa-
tion (Liu et al. 2018; Parthasarathi and Pineau 2018; Young
et al. 2020; Wu et al. 2019; Liu et al. 2019b; Xu et al. 2020a).
A knowledge retriever works with the utterance decoder to
generate responses based on the retrieved shallow common-
sense knowledge entities. These models enjoy rich knowl-
edge augmentation since all short KG paths relating to the
user message are encoded, but they lack the ability to extend
the topics along with the KG connections, which is essen-
tial when organizing a natural dialogue. Another set of work
focuses on developing a series of goals/topics for each con-
versation turn by walking on the KG (Zhang et al. 2019;
Moon et al. 2019; Jung, Son, and Lyu 2020). These graph
walkers are recurrent or graph attention based models that
attentively read the dialogues and reason over the KG paths,
starting from the entity mentioned in the last user message.

Global goal guided dialogue systems. To the best of our
knowledge, we are the first that study global goal oriented
KG path transitions in dialogue. Existing similar work either
omits explicit approaching (Xu et al. 2020b) or grounds in
unstructured knowledge (Tang et al. 2019). Xu et al. propose
a hierarchical policy model to plan and generate responses
of different levels where the high-level policy plans a global
topic. However, the low-level policy plans responses that are
coherent to this topic instead of approaching it. Tang et al.
study guiding the conversation to an assigned target subject,
which has a similar purpose as ours, but the transition is
grounded in a disordered keyword set which lacks common-
sense connections.

Conclusion
We propose HiTKG, a hierarchical transformer based KG
walker that leverages multiscale inputs for graph reasoning
in dialogues. HiTKG first learns to plan natural turn-level
goals and then learns to approach a global goal. Both au-
tomatic and human evaluation illustrate the effectiveness of
our method. In the future, we will investigate how to im-
prove the embedding, learning framework, and evaluation
criteria of stage 2 to further extend this topic.
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