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Natural language processing 
(NLP) is a theory-motivated 
range of computational tech-

niques for the automatic analysis and 
representation of human language. 
NLP research has evolved from the era 
of punch cards and batch processing (in 
which the analysis of a sentence could 
take up to 7 minutes) to the era of 
Google and the likes of it (in which 
millions of webpages can be processed 
in less than a second). This review 
paper draws on recent developments in 
NLP research to look at the past, pres-
ent, and future of NLP technology in a 
new light. Borrowing the paradigm of 
‘jumping curves’ from the field of  
business management and marketing 
prediction, this survey article reinter-
prets the evolution of NLP research as 
the intersection of three overlapping 
curves-namely Syntactics, Semantics, 
and Pragmatics Curves- which will 
eventually lead NLP research to evolve 
into natural language understanding.

I. Introduction
Between the birth of the Internet and
2003, year of birth of social networks
such as MySpace, Delicious, LinkedIn, 
and Facebook, there were just a few
dozen exabytes of information on the
Web. Today, that same amount of infor-
mation is created weekly. The advent of
the Social Web has provided people
with new content-sharing services that
allow them to create and share their

own contents, ideas, and opinions, in a 
time- and cost-efficient way, with virtu-
ally millions of other people connected 
to the World Wide Web. This huge 
amount of information, however, is 
mainly unstructured (because it is spe-
cifically produced for human consump-
tion) and hence not directly machine-
processable. The automatic analysis of 
text involves a deep understanding of 
natural language by machines, a reality 
from which we are still very far off.

Hither to, online information 
retrieval, aggregation, and processing 
have mainly been based on algorithms 
relying on the textual representation of 
web pages. Such algorithms are very 
good at retrieving texts, splitting them 
into parts, checking the spelling and 
counting the number of words. When 
it comes to interpreting sentences and 
extracting meaningful information, 
however, their capabilities are known to 
be very limited. Natural language pro-
cessing (NLP), in fact, requires high-
level symbolic capabilities (Dyer, 1994), 
including:
❏ creation and propagation of dynamic

bindings;

❏ manipulation of recursive, constitu-
ent structures;

❏ acquisition and access of lexical,
semantic, and episodic memories;

❏ control of multiple learning/process-
ing modules and routing of informa-
tion among such modules;

❏ grounding of basic-level language
constructs (e.g., objects and actions)
in perceptual/motor experiences;

❏ representation of abstract concepts.
All such capabilities are required to

shift from mere NLP to what is usually 
referred to as natural language under-
standing (Allen, 1987). Today, most of 
the existing approaches are still based on 
the syntactic representation of text, a 
method that relies mainly on word co-
occurrence frequencies. Such algorithms 
are limited by the fact that they can pro-
cess only the information that they can 
‘see’. As human text processors, we do 
not have such limitations as every word 
we see activates a cascade of semantically 
related concepts, relevant episodes, and 
sensory exper iences, all of which 
enable the completion of complex 
NLP tasks—such as word-sense disam-
biguation, textual entailment, and 
semantic role labeling—in a quick and 
effortless way.

Computational models attempt to 
bridge such a cognitive gap by emulat-
ing the way the human brain processes 
natural language, e.g., by leveraging on 
semantic features that are not explicitly 
expressed in text. Computational mod-
els are useful both for scientific pur-
poses (such as exploring the nature of 
linguistic communication), as well as for 
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practical purposes (such as enabling 
effective human-machine communica-
tion). Traditional research disciplines do 
not have the tools to completely address 
the problem of how language compre-
hension and production work. Even if 
you combine all the approaches, a com-
prehensive theory would be too com-
plex to be studied using traditional 
methods. However, we may be able to 
realize such complex theories as com-
puter programs and then test them by 
observing how well they perform. By 
seeing where they fail, we can incre-
mentally improve them. Computational 
models may provide very specific pre-
dictions about human behaviors that 
can then be explored by the psycholin-
guist. By continuing this process, we 
may eventually acquire a deeper under-
standing of how human language pro-
cessing occurs. To realize such a dream 
will take the combined efforts of for-
ward-thinking psycholinguists, neuro-
scientists, anthropologists, philosophers, 
and computer scientists.

Unlike previous surveys focusing on 
specific aspects or applications of NLP 
research (e.g., evaluation criteria (Jones 
& Galliers, 1995), knowledge-based sys-
tems (Mahesh, Nirenburg, & Tucker, 
1997), text retrieval (Jackson & Moulin-
ier, 1997), and connectionist models 
(Christiansen & Chater, 1999)), this 
review paper focuses on the evolution of 
NLP research according to three differ-
ent paradigms, namely: bag-of-
words, word embeddings, and narrative 
understanding. Borrowing the concept 
of ‘jumping curves’ from the field of 
business management, this survey 
article explains how and why NLP 
research has been gradually shifting 
from lexical semantics to 
compositional semantics and offers 
insights on next-generation narrative-
based NLP technology.

The rest of the paper is organized as 
follows: Section 2 presents the 
historical background and the different 
schools of thought of NLP research; 
Section 3 discusses past, present,  and 
future evolution of NLP 
technologies; Section 4 describes 
traditional syntax-centered NLP 
methodologies; Section 5  illustrates 
emerging semantics-based NLP 

approaches; Section 6 introduces pio-
neering works on narrative understand-
ing; Section 7 proposes further insights 
on the evolution of current NLP tech-
nologies and suggests near future 
research directions; finally, Section 8 
concludes the paper and outlines future 
areas of NLP research.

2. Background
Since its inception in 1950s, NLP
research has been focusing on tasks such
as machine translation, information
retrieval, text summarization, question
answering, information extraction, topic
modeling, and more recently, opinion
mining. Most NLP research carried out
in the early days focused on syntax, 
partly because syntactic processing was
manifestly necessary, and partly through
implicit or explicit endorsement of the
idea of syntax-driven processing.

Although the semantic problems and 
needs of NLP were clear from the very 
beginning, the strategy adopted by the 
research community was to tackle syntax 
first, for the more direct applicability of 
machine learning techniques. However, 
there were some researchers who con-
centrated on semantics because they saw 
it as the really challenging problem or 
assumed that semantically-driven pro-
cessing be a better approach. Thus, Mas-
terman’s and Ceccato’s groups, for exam-
ple, exploited semantic pattern matching 
using semantic categories and semantic 
case frames, and in Ceccato’s work (Cec-
cato, 1967) particularly, world knowledge 
was used to extend linguistic semantics, 
along with semantic networks as a 
device for knowledge representation. 
Later works recognized the need for 
external knowledge in interpreting and 
responding to language input (Minsky, 
1968) and explicitly emphasized seman-
tics in the form of general-purpose 
semantics with case structures for repre-
sentation and semantically-driven pro-
cessing (Schank, 1975).

One of the most popular representa-
tion strategies since then has been first 
order logic (FOL), a deductive system 
that consists of axioms and rules of infer-
ences and can be used to formalize rela-
tionally-rich predicates and quantifica-

tion (Barwise, 1977). FOL supports 
syntactic, semantic and, to a certain 
degree, pragmatic expressions. Syntax 
specifies the way groups of symbols are 
to be arranged, so that the group of sym-
bols is considered properly formed. 
Semantics specifies what well-formed 
expressions are supposed to mean. Prag-
matics specifies how contextual informa-
tion can be leveraged to provide better 
correlations between different semantics, 
which is essential for tasks such as word 
sense disambiguation. Logic, however, is 
known to have the problem of monoto-
nicity. The set of entailed sentences will 
only increase as information is added to 
the knowledge base, but this runs the 
risk of violating a common property of 
human reasoning—the freedom and 
flexibility to change one’s mind. Solu-
tions such as default and linear logic 
serve to address parts of these issues. 
Default logic is proposed by Raymond 
Reiter to formalize default assumptions, 
e.g., “all birds fly” (Reiter, 1980). How-
ever, issues arise when default logic for-
malizes facts that are true in the majority 
of cases but are false with regards to 
exceptions to these ‘general rules’, e.g., 
“penguins do not fly”.

Another popular model for the 
description of natural language is pro-
duction rule (Chomsky, 1956). A pro-
duction rule system keeps a working 
memory of on-going memory assertions. 
This working memory is volatile and in 
turn keeps a set of production rules. A 
production rule comprises of an ante-
cedent set of conditions and a conse-
quent set of actions (i.e., IF <condi-
tions> THEN <actions>). The basic 
operation for a production rule system 
involves a cycle of three steps (‘recog-
nize’, ‘resolve conflict’, and ‘act’) that 
repeats until no more rules are applicable 
to the working memory. The step ‘recog-
nize’ identifies the rules whose anteced-
ent conditions are satisfied by the current 
working memory. The set of rules identi-
fied is also called the conflict set. The 
step ‘resolve conflict’ looks into the con-
flict set and selects a set of suitable rules 
to execute. The step ‘act’ simply executes 
the actions and updates the working 
memory. Production rules are modular. 
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Each rule is independent from the oth-
ers, allowing rules to be added and 
deleted easily. Production rule systems 
have a simple control structure and the 
rules are easily understood by humans. 
This is because rules are usually derived 
from the observation of expert behavior 
or expert knowledge, thus the terminol-
ogy used in encoding the rules tends to 
resonate with human understanding. 
However, there are issues with scalability 
when production rule systems become 
larger; a significant amount of mainte-
nance is required to maintain a system 
with thousands of rules.

Another instance of a prominent 
NLP model is the ontology Web lan-
guage (OWL) (McGuinness & Van 
Harmelen, 2004), an XML-based vocab-
ulary that extends the resource descrip-
tion framework (RDF) to provide a 
more comprehensive set for ontology 
representation, such as the definition of 
classes, relationships between classes, 
properties of classes, and constraints on 
relationships between classes and their 
properties. RDF supports the subject-
predicate-object model that makes 
assertions about a resource. RDF-based 
reasoning engines have been developed 
to check for semantic consistency which 
then helps to improve ontology classifi-
cation. In general, OWL requires the 
strict definition of static structures, and 
therefore is not suitable for representing 
knowledge that contains subjective 
degrees of confidence. Instead, it is more 
suited for representing declarative 
knowledge. Furthermore, yet another 
problem of OWL is that it does not 

allow for an easy representation of tem-
poral-dependent knowledge.

Networks are yet another well-
known way to do NLP. For example, 
Bayesian networks (Pearl, 1985) (also 
known as belief networks) provide a 
means of expressing joint probability 
distributions over many interrelated 
hypotheses. All variables are represented 
using directed acyclic graph (DAG). Arcs 
are causal connections between two 
variables where the truth of the former 
directly affects the truth of the latter. A 
Bayesian network is able to represent 
subjective degrees of confidence. The 
representation explicitly explores the 
role of prior knowledge and combines 
pieces of evidence of the likelihood of 
events. In order to compute the joint 
distribution of the belief network, there 
is a need to know Pr(P|parents(P)) for 
each variable P. It is difficult to deter-
mine the probability of each variable P 
in the belief network. Hence, it is also 
difficult to enhance and maintain the 
statistical table for large-scale informa-
tion processing problems. Bayesian net-
works also have limited expressiveness, 
which is only equivalent to the expres-
siveness of proposition logic. For this 
reason, semantic networks are more 
often used in NLP research.

A semantic network (Sowa, 1987) is 
a graphical notation for representing 
knowledge in patterns of interconnected 
nodes and arcs. Definitional networks 
focus on IsA relationships between a 
concept and a newly defined sub-type. 
The result of such a structure is called a 
generalization, which in turn supports 

the rule of inheritance for copying 
properties defined for a super-type to all 
of its sub-types. The information in defi-
nitional networks is often assumed to be 
true. Yet another kind of semantic net-
works is the assertional network, which 
is meant to assert propositions and the 
information it contains is assumed to be 
contingently true. Contingent truth is 
not reached with the application of 
default logic; instead, it is based more on 
Man’s application of common-sense. 
The proposition also has sufficient rea-
son in which the reason entails the 
proposition, e.g., “the stone is warm” 
with the sufficient reasons being “the 
sun is shining on the stone” and “what-
ever the sun shines on is warm”.

The idea of semantic networks arose 
in the early 1960s from Simmons (Sim-
mons, 1963) and Quillian (Quillian, 
1963) and was further developed in the 
late 1980s by Marvin Minsky within his 
Society of Mind theory (Minsky, 1986), 
according to which the magic of 
human intelligence stems from our vast 
diversity—and not from any single, per-
fect principle. Minsky theorized that the 
mind is made of many little parts that 
he termed ‘agents’, each mindless by 
itself but able to lead to true intelligence 
when working together. These groups 
of agents, or ‘agencies’, are responsible 
for performing some type of function, 
such as remembering, comparing, gen-
eralizing, exemplifying, analogizing, sim-
plifying, predicting, etc. Minsky’s theory 
of human cognition, in particular, was 
welcomed with great enthusiasm by the 
artificial intelligence (AI) community 
and gave birth to many attempts to 
build common-sense knowledge bases 
for NLP tasks. The most representative 
projects are: (a) Cyc (Lenat & Guha, 
1989), Doug Lenat’s logic-based reposi-
tory of common-sense knowledge; (b) 
WordNet (Fellbaum, 1998), Christiane 
Fellbaum’s universal database of word 
senses; (c) Thought-Treasure (Mueller, 
1998), Erik Mueller’s story understand-
ing system; and (d) the Open Mind 
Common Sense project (Singh, 2002), a 
second-generation common-sense data-
base. The last project stands out because 
knowledge is represented in natural  

TABLE 1 Most popular schools of thought in knowledge representation and NLP research.

APPROACH CHARACTERISTIC FEATURES REFERENCE

PRODUCTION RULE CYCLES OF `RECOGNIZE’, `RESOLVE 
CONFLICT’, `ACT’ STEPS

(CHOMSKY, 1956)

SEMANTIC PATTERN 
MATCHING

SEMANTIC CATEGORIES AND SEMANTIC 
CASE FRAMES

(CECCATO, 1967)

FIRST ORDER LOGIC 
(FOL)

AXIOMS AND RULES OF INFERENCES (BARWISE, 1977)

BAYESIAN NETWORKS VARIABLES REPRESENTED BY A PROBABILIS-
TIC DIRECTED ACYCLIC GRAPH

(PEARL, 1985)

SEMANTIC NETWORKS PATTERNS OF INTERCONNECTED NODES 
AND ARCS

(SOWA, 1987)

ONTOLOGY WEB 
LANGUAGE (OWL)

HIERARCHICAL CLASSES AND RELATION-
SHIPS BETWEEN THEM

(MCGUINNESS & VAN 
HARMELEN, 2004)
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language (rather than being based upon 
a formal logical structure), and informa-
tion is not hand-crafted by expert engi-
neers but spontaneously inserted by 
online volunteers. Today, the common-
sense knowledge collected by the Open 
Mind Common Sense project is being 
exploited for many different NLP tasks 
such as textual affect sensing (H. Liu, 
Lieberman, & Selker, 2003), casual con-
versation understanding (Eagle, Singh, & 
Pentland, 2003), opinion mining (Cam-
bria & Hussain, 2012), story telling 
(Hayden et al., 2013), and more.

3. Overlapping NLP Curves
With the dawn of the Internet Age, 
civilization has undergone profound, 
rapid-fire changes that we are experi-
encing more than ever today. Even
technologies that are adapting, growing, 
and innovating have the gnawing sense
that obsolescence is right around the
corner. NLP research, in particular, has
not evolved at the same pace as other
technologies in the past 15 years.

While NLP research has made great 
strides in producing artificially intelli-
gent behaviors, e.g., Google, IBM’s Wat-
son, and Apple’s Siri, none of such NLP 
frameworks actually understand what 
they are doing—making them no differ-
ent from a parrot that learns to repeat 
words without any clear understanding 
of what it is saying. Today, even the most 
popular NLP technologies view text 
analysis as a word or pattern matching 
task. Trying to ascertain the meaning of 
a piece of text by processing it at word-
level, however, is no different from 
attempting to understand a picture by 
analyzing it at pixel-level.

In a Web where user-generated con-
tent (UGC) is drowning in its own out-
put, NLP researchers are faced with the 
same challenge: the need to jump the 
curve (Imparato & Harari, 1996) to 
make significant, discontinuous leaps in 
their thinking, whether it is about 
information retrieval, aggregation, or 
processing. Relying on arbitrary key-
words, punctuation, and word co-
occurrence frequencies has worked 
fairly well so far, but the explosion of 
UGCs and the outbreak of deceptive 

phenomena such as web-trolling and 
opinion spam, are causing standard NLP 
algorithms to be increasing less efficient. 
In order to properly extract and manip-
ulate text meanings, a NLP system must 
have access to a significant amount of 
knowledge about the world and the 
domain of discourse.

To this end, NLP systems will 
gradually stop relying too much on 
word-based techniques while starting 
to exploit semantics more consistently 
and, hence, make a leap from the  
Syntactics Curve to the Semantics 
Curve (Figure  1). NLP research has 
been interspersed with word-level 
approaches because, at first glance, the 
most basic unit of linguistic structure 
appears to be the word. Single-word 
expressions, however, are just a subset 
of concepts, multi-word expressions 
that carry specific semantics and sentics 
(Cambria & Hussain, 2012), that is, the 
denotative and connotative informa-
tion commonly associated with real-
world objects, actions, events, and 
people. Sentics, in particular, specifies 
the affective information associated 
with such real-world entities, which is 
key for common-sense reasoning and 
decision-making.

Semantics and sentics include com-
mon-sense knowledge (which humans 
normally acquire during the formative 
years of their lives) and common knowl-

edge (which people continue to accrue 
in their everyday life) in a re-usable 
knowledge base for machines. Common 
knowledge includes general knowledge 
about the world, e.g., a chair is a type of 
furniture, while common-sense knowl-
edge comprises obvious or widely 
accepted things that people normally 
know about the world but which are 
usually left unstated in discourse, e.g., 
that things fall downwards (and not 
upwards) and people smile when they are 
happy. The difference between common 
and common-sense knowledge can be 
expressed as the difference between 
knowing the name of an object and 
understanding the same object’s purpose. 
For example, you can know the name of 
all the different kinds or brands of ‘pipe’, 
but not its purpose nor the method of 
usage. In other words, a ‘pipe’ is not a 
pipe unless it can be used (Magritte, 
1929) (Figure 2).

It is through the combined use of 
common and common-sense knowl-
edge that we can have a grip on both 
high- and low-level concepts as well as 
nuances in natural language understand-
ing and therefore effectively communi-
cate with other people without having 
to continuously ask for definitions and 
explanations. Common-sense, in partic-
ular, is key in properly deconstructing 
natural language text into sentiments 
according to different contexts—for 

FIGURE 1 Envisioned evolution of NLP research through three different eras or curves.

NLP System Performance Best Path

1930                      1970 2010 2050

Syntactics Curve
(Bag-of-Words Model)

Semantics Curve
(Word Embeddings)

Pragmatics Curve
(Narrative Understanding)

 Time
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example, in appraising the concept ‘small 
room’ as negative for a hotel review and 
‘small queue’ as positive for a post office, 
or the concept ‘go read the book’ as 
positive for a book review but negative 
for a movie review.

Semantics, however, is just one layer 
up in the scale that separates NLP from 
natural language understanding. In 
order to achieve the ability to accu-
rately and sensibly process information, 
computational models will also need to 
be able to project semantics and sentics 
in time, compare them in a parallel and 
dynamic way, according to different 
contexts and with respect to different 
actors and their intentions (Howard & 
Cambria, 2013). This will mean jump-
ing from the Semantics Curve to the 
Pragmatics Curve, which will enable 
NLP to be more adaptive and, hence, 
open-domain, context-aware, and 
intent-driven. Intent, in particular, will 
be key for tasks such as sentiment anal-
ysis—a concept that generally has a 
negative connotation, e.g., small seat, 
might turn out to be positive, e.g., if the 
intent is for an infant to be safely seated 
in it.

While the paradigm of the Syntac-
tics Curve is the bag-of-words model 
(Zellig, 1954) and the Semantics 
Curve is characterized by a 
concept-level model (Cambria & 
Hussain, 2012), the paradigm of the 
Pragmatics Curve will be the 
narrative understanding model. In 
this last model, each piece of text 
will be represented by mini-stories 
or interconnected episodes, leading 
to a more detailed level of text 
comprehension and sensible computa-
tion. While the concept-level model 
helps to overcome problems such as 
word-sense di sambiguat ion and 
semantic role labeling, the narrative
understanding model will enable 
tackling NLP issues such as co-
reference resolution and textual 
entailment.

4. Poising on the Syntactics Curve
Today, syntax-centered NLP is still the
most popular way to manage tasks such
as information retrieval and extraction,
auto-categorization, topic modeling,
etc. Despite semantics enthusiasts hav-

ing argued the importance and inevita-
bility of a shift away from syntax for 
years, the vast major ity of NLP 
researchers nowadays are still trying to 
keep their balance on the Syntactics 
Curve. Syntax-centered NLP can be 
broadly grouped into three main cate-
gories: keyword spotting, lexical affinity, 
and statistical methods.

4.1. Keyword Spotting
Keyword Spotting is the most naïve 
approach and probably also the most 
popular because of its accessibility and 
economy. Text is classified into catego-
ries based on the presence of fairly 
unambiguous words. Popular projects 
include: (a) Ortony’s Affective Lexicon 
(Ortony, Clore, & Collins, 1988), which 
groups words into affective categories; 
(b) Penn Treebank (Marcus, Santorini, &
Marcinkiewicz, 1994), a corpus consist-
ing of over 4.5 million words of Ameri-
can English annotated for part-of-
speech (POS) infor mat ion; (c)
PageRank (Page, Brin, Motwani, &
Winograd, 1999), the famous ranking
algorithm of Google; (d) LexRank
(GÜnes & Radev, 2004), a stochastic
graph-based method for computing rel-
ative importance of textual units for
NLP; finally, (e) TextRank (Mihalcea &
Tarau, 2004), a graph-based ranking
model for text processing, based on two
unsupervised methods for keyword and
sentence extraction. The major weakness
of keyword spotting lies in its reliance
upon the presence of obvious words
which are only surface features of the
prose. A text document about dogs
where the word ‘dog’ is never men-
tioned, e.g., because dogs are addressed
according to the specific breeds they

belong to, might never be retrieved by a 
keyword-based search engine.

4.2. Lexical Affinity
Lexical Affinity is slightly more sophisti-
cated than keyword spotting as, rather 
than simply detecting obvious words, it 
assigns to arbitrary words a probabilistic 
‘affinity’ for a particular category (Bush, 
1999; Bybee & Scheibman, 1999; Krug, 
1998; Church & Hanks, 1989; Jurafsky 
et al., 2000). For example, ‘accident’ 
might be assigned a 75% probability of 
indicating a negative event, as in ‘car 
accident’ or ‘hurt in an accident’. These 
probabilities are usually gleaned from 
linguistic corpora (Kucera & Francis, 
1969; Godfrey, Holliman, & McDaniel, 
1992; Stevenson, Mikels, & James, 2007). 
Although this approach often outper-
forms pure keyword spotting, there are 
two main problems with it. First, lexical 
affinity operating solely on the word-
level can easily be tricked by sentences 
such as “I avoided an accident” (nega-
tion) and “I met my girlfriend by acci-
dent” (connotation of unplanned but 
lovely surprise). Second, lexical affinity 
probabilities are often biased toward text 
of a particular genre, dictated by the 
source of the linguistic corpora. This 
makes it difficult to develop a re-usable, 
domain-independent model.

4.3. Statistical NLP
Statistical NLP has been the mainstream 
NLP research direction since late 1990s. 
It relies on language models (Manning 
& SchÜtze, 1999; Hofmann, 1999; 
Nigam, McCallum, Thrun, & Mitchell, 
2000) based on popular machine-learn-
ing algorithms such as maximum-likeli-
hood (Berger, Della Pietra, & Della 
Pietra, 1996), expectation maximization 
(Nigam et al., 2000), conditional ran-
dom fields (Lafferty, McCallum, & 
Pereira, 2001), and support vector 
machines (Joachims, 2002). By feeding a 
large training corpus of annotated texts 
to a machine-learning algorithm, it is 
possible for the system to not only learn 
the valence of keywords (as in the key-
word spotting approach), but also to take 
into account the valence of other arbi-
trary keywords (like lexical affinity), 

FIGURE 2 A ‘pipe’ is not a pipe, unless 
we know how to use it.
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punctuation, and word co-occurrence 
frequencies. However, statistical methods 
are generally semantically weak, mean-
ing that, with the exception of obvious 
keywords, other lexical or co-occur-
rence elements in a statistical model 
have little predictive value individually. 
As a result, statistical text classifiers only 
work with acceptable accuracy when 
given a sufficiently large text input. So, 
while these methods may be able to 
classify text on the page- or paragraph-
level, they do not work well on smaller 
text units such as sentences or clauses.

5. Surfing the Semantics Curve
Semantics-based NLP focuses on the
intrinsic meaning associated with natu-
ral language text. Rather than simply
processing documents at syntax-level, 
semantics-based approaches rely on
implicit denotative features associated
with natural language text, hence step-
ping away from the blind usage of key-
words and word co-occurrence count. 
Unlike purely syntactical techniques, 
concept-based approaches are also able
to detect semantics that are expressed
in a subtle manner, e.g., through the
analysis of concepts that do not explic-
itly convey relevant information, but
which are implicitly linked to other
concepts that do so. Semantics-based
NLP approaches can be broadly
grouped into two main categories:
techniques that leverage on external
knowledge, e.g., ontologies (taxonomic
NLP) or semantic knowledge bases
(noetic NLP), and methods that exploit
only intrinsic semantics of documents
(endogenous NLP).

5.1. Endogenous NLP
Endogenous NLP involves the use of 
machine-learning techniques to per-
form semantic analysis of a corpus by 
building structures that approximate 
concepts from a large set of documents. 
It does not involve prior semantic 
understanding of documents; instead, it 
relies only on the endogenous knowl-
edge of these (rather than on external 
knowledge bases). The advantages of this 
approach over the knowledge engineer-
ing approach are effectiveness, consider-

able savings in terms of expert man-
power, and straightforward portability to 
different domains (Sebastiani, 2002).

Endogenous NLP includes methods 
based either on lexical semantics, which 
focuses on the meanings of individual 
words, or compositional semantics, 
which looks at the meanings of sen-
tences and longer utterances. The vast 
ma jor i ty  o f  endogenous  NLP 
approaches is based on lexical semantics 
and includes well-known machine-
learning techniques. Some examples of 
this are: (a) latent semantic analysis 
(Hofmann, 2001), where documents are 
represented as vectors in a term space; 
(b) latent Dirichlet allocation (Porteous
et al., 2008), which involves attributing
document terms to topics; (c) MapRe-
duce (C. Liu, Qi, Wang, & Yu, 2012), a
framework that has proved to be very
efficient for data-intensive tasks, e.g., 
large scale RDFS/OWL reasoning and
(d) genetic algorithms (D. Goldberg, 
1989), probabilistic search procedures
designed to work on large spaces
involving states that can be represented
by strings.

Works leveraging on compositional 
semantics, instead, mainly include 
approaches based on Hidden Markov 
Models (Denoyer, Zaragoza, & Gallinari, 
2001; Frasconi, Soda, & Vullo, 2001), 
association rule learning (Cohen, 1995; 
Cohen & Singer, 1999), feature ensem-
bles (Xia, Zong, Hu, & Cambria, 2013; 
Poria, Gelbukh, Hussain, Das, & Ban-
dyopadhyay, 2013) and probabilistic gen-
erative models (Lau, Xia, & Ye, 2014).

5.2. Taxonomic NLP
Taxonomic NLP includes initiatives 
that aim to build universal taxonomies 
or Web ontologies for grasping the sub-
sumptive or hierarchical semantics asso-
ciated with natural language expres-
sions. Such taxonomies usually consist 
of concepts (e.g., painter), instances (e.g., 
“Leonardo da Vinci”), attributes and 
values (e.g., “Leonardo’s birthday is 
April 15, 1452”), and relationships (e.g., 
“Mona Lisa is painted by Leonardo”). 
In particular, subsumptive knowledge 
representations build upon IsA rela-
tionships, which are usually extracted 

through syntactic patterns for auto-
matic hypernym discovery (Hearst, 
1992) able to infer tr iples such as 
<Pablo Picasso-IsA-ar tist> from 
stretches of text like “...artists such as 
Pablo Picasso...” or “...Pablo Picasso 
and other artists...”.

In general, attempts to build taxo-
nomic resources are countless and 
include both resources crafted by 
human experts or community efforts, 
such as WordNet and Freebase (Bol-
lacker, Evans, Paritosh, Sturge, & Taylor, 
2008), and automatically built knowl-
edge bases. Examples of such knowl-
edge bases include: (a) WikiTaxonomy 
(Ponzetto & Strube, 2007), a taxonomy 
extracted from Wikipedia’s category 
links; (b) YAGO (Suchanek, Kasneci, & 
Weikum, 2007), a semantic knowledge 
base derived from WordNet, Wikipedia, 
and GeoNames; (c) NELL (Carlson et 
al., 2010) (Never-Ending Language 
Learning), a semantic machine-learning 
system that is acquiring knowledge 
from the Web every day; finally, (d) Pro-
base (Wu, Li, Wang, & Zhu, 2012), a 
research prototype that aims to build a 
unified taxonomy of worldly facts from 
1.68 billion webpages in Bing repository.

Other popular Semantic Web proj-
ects include: (a) SHOE (Heflin & Hen-
dler, 1999) (Simple HTML Ontology 
Extensions), a knowledge representa-
tion language that allows webpages to 
be annotated with semantics; (b) 
Annotea (Kahan, 2002), an open RDF 
infrastructure for shared Web annota-
tions; (c) SIOC (Breslin, Harth, Bojars, 
& Decker, 2005) (Semantically Inter-
linked Online Communities), an ontol-
ogy combining terms from vocabular-
ies that already exist with new terms 
needed to describe the relationships 
between concepts in the realm of 
online community sites; (d) SKOS 
(Miles & Bechhofer, 2009) (Simple 
Knowledge Organization System), an 
area of work developing specifications 
and standards to support the use of 
knowledge organization systems such 
as thesauri, classification schemes, sub-
ject heading lists and taxonomies; (e) 
FOAF (Br ickley & Miller, 2010) 
(Friend Of A Friend), a project devoted 
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to linking people and information 
using the Web; (f  ) ISOS (Ding, Jin, 
Ren, & Hao, 2013) (Intelligent Self-
Organizing Scheme), a scheme for the 
Internet of Things inspired by the 
endocr ine regulating mechanism; 
finally, (g) FRED (Gangemi, Presutti, & 
Reforgiato, 2014), a tool that produces 
an event-based RDF/OWL representa-
tion of natural language text. The main 
weakness of taxonomic NLP is in the 
typicality of their knowledge bases. The 
way knowledge is represented in tax-
onomies and Web ontologies is usually 
strictly defined and does not allow for 
the combined handling of differing 
nuanced concepts, as the inference of 
semantic features associated with con-
cepts is bound by the fixed, flat repre-
sentation. The concept of ‘book’, for 
example, is typically associated to con-
cepts such as ‘newspaper’ or ‘magazine’, 
as it contains knowledge, has pages, etc. 
In a different context, however, a book 
could be used as paperweight, doorstop, 
or even as a weapon. Another key 
weakness of Semantic Web projects is 
that they are not easily scalable and, 
hence, not widely adopted (Gueret, 
Schlobach, Dentler, Schut, & Eiben, 
2012). This increases the amount of 
time that has to pass before the initial 
customer feedback is even possible, and 
also slows down feedback loop itera-
tions, ultimately putting Semantic Web 
applications at a user-experience and 
agility disadvantage as compared to 
their Web 2.0 counterparts, because 
their usability inadvertently takes a 
back seat to the number of other com-
plex problems that have to be solved 
before clients even see the application.

5.3. Noetic NLP
Noetic NLP embraces all the mind-
inspired approaches to NLP that 
attempt to compensate for the lack of 
domain adaptivity and implicit seman-
tic feature inference of traditional algo-
rithms, e.g., first principles modeling or 
explicit statistical modeling. Noetic 
NLP differs from taxonomic NLP in 
which it does not focus on encoding 
subsumption knowledge, but rather 
attempts to collect idiosyncratic knowl-

edge about objects, actions, events, and 
people. Noetic NLP, moreover, per-
forms reasoning in an adaptive and 
dynamic way, e.g., by generating con-
text-dependent results or by discover-
ing new semantic patterns that are not 
explicitly encoded in the knowledge 
base. Examples of noetic NLP include 
paradigms such as connectionist NLP 
(Christiansen & Chater, 1999), which 
models mental phenomena as emergent 
processes of interconnected networks 
of simple units, e.g., neural networks 
(Collobert et al., 2011); deep learning 
(Martinez, Bengio, & Yannakakis, 2013); 
sentic computing (Cambria & Hussain, 
2012), an approach to concept-level 
sentiment analysis based on an ensem-
ble of graph-mining and dimensional-
ity-reduction techniques; and energy-
based knowledge representation 
(Olsher, 2013), a novel framework for 
nuanced common-sense reasoning.

Besides knowledge representation 
and reasoning, a key aspect of noetic 
NLP is also semantic parsing. Most cur-
rent NLP technologies rely on part-of-
speech (POS) tagging, but that is unlike 
the way the human mind extracts 
meaning from text. Instead, just as the 
human mind does, a construction-based 
semantic parser (CBSP) (Cambria, Raja-
gopal, Olsher, & Das, 2013) quickly 
identifies meaningful stretches of text 
without requiring time-consuming 
phrase structure analysis. The use of con-
structions, defined as “stored pairings of 
form and function” (A. Goldberg, 2003) 
makes it possible to link distributed lin-
guistic components to one another, eas-
ing extraction of semantics from linguis-
tic structures. Constructions are 
composed of fixed lexical items and cat-
egory-based slots, or ‘spaces’ that are 
filled in by lexical items during text pro-
cessing. An interesting example from the 
relevant literature would be the con-
struction [<ACTION> <OBJECT> 
<DIRECTION> <OBJECT>]. 
Instances of this include the phrases 
‘sneeze the napkin across the table’ or 
‘hit the ball over the fence’. Construc-
tions not only help understand how var-
ious lexical items work together to cre-
ate the whole meaning, but also give the 

parser a sense of what categories of 
words are used together and thus where 
to expect different words.

CBSP uses this knowledge to deter-
mine constructions, their matching lexi-
cal terms, and how good each match is. 
Each of CBSP’s constructions contrib-
utes its own unique semantics and car-
ries a unique name. In order to choose 
the best possible construction for each 
span of text, CBSP uses knowledge 
about the lexical items found in text. 
This knowledge is obtained from look-
ing individual lexical terms up in the 
knowledge bases so as to obtain infor-
mation about the basic category mem-
bership of that word.

It then efficiently compares these 
potential memberships with the catego-
ries specified for each construction in 
the corpus, finding the best matches so 
that CBSP can extract a concept from a 
sentence. An example would be the 
extraction of the concept ‘buy christmas 
present’ from the sentence “today I 
bought a lot of very nice Christmas 
gifts”. Constructions are typically nested 
within one another: CBSP is capable of 
finding only those construction overlaps 
that are semantically sensible, based on 
the overall semantics of constructions 
and construction slot categories, thus 
greatly reducing the time taken to pro-
cess large numbers of texts. In the big 
data environment, a key benefit of con-
struction-based parsing is that only small 
sections of text are required in order to 
extract meaning; word category infor-
mation and the generally small size of 
constructions mean that the parser can 
still make use of error-filled or conven-
tionally unparseable text.

6. Foreseeing the Pragmatics Curve
Narrative understanding and generation
are central for reasoning, decision-mak-
ing, and ‘sensemaking’. Besides being a
key part of human-to-human commu-
nication, narratives are the means by
which reality is constructed and plan-
ning is conducted. Decoding how nar-
ratives are generated and processed by
the human brain might eventually lead
us to truly understand and explain
human intelligence and consciousness.
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Computational modeling is a pow-
erful and effective way to investigate 
narrative understanding. A lot of the 
cognitive processes that lead humans to 
understand or generate narratives have 
traditionally been of interest to AI 
researchers under the umbrella of 
knowledge representation, common-
sense reasoning, social cognition, learn-
ing, and NLP. Once NLP research can 
grasp semantics at a level comparable to 
human text processing, the jump to the 
Pragmatics Curve will be necessary, in 
the same way as semantic machine 
learning is now gradually evolving from 
lexical to compositional semantics. 
There are already a few pioneering 
works that attempt to understand narra-
tives by leveraging on discourse struc-
ture (Asher & Lascarides, 2003), argu-
ment-suppor t  hierarchies  (Bex, 
Prakken, & Verheij, 2007), plan graphs 
(Young, 2007), and common-sense rea-
soning (Mueller, 2007). One of the 
most representative initiatives in this 
context is Patrick Winston’s work on 
computational models of narrative 
(Winston, 2011; Richards, Finlayson, & 
Winston, 2009), which is based on five 
key hypotheses:
❏ The inner language hypothesis: we

have an inner symbolic language that
enables event description.

❏ The strong story hypothesis: we can
assemble event descriptions into stories.

❏ The directed perception hypothesis: 
we can direct the resources of our per-
ceptual faculties to answer questions
using real and imagined situations.

❏ The social animal hypothesis: we
have a powerful reason to express the
thought in our inner language in an
external communication language.

❏ The exotic engineering hypothesis: 
our brains are unlike standard left-to-
right engineered systems.
Essentially, Patrick Winston believes

that human intelligence stems from our 
unique abilities for storytelling and 
understanding (Finlayson & Winston, 
2011). Accordingly, his recent work has 
focused on developing a computational 
system that is able to analyze narrative 
texts to infer non-obvious answers to 
questions about these texts. This has 

resulted in the Genesis System. Work-
ing with short story summaries pro-
vided in English, together with low-
leve l  common-sense ru les  and 
higher-level reflection patterns that are 
also expressed in English, Genesis has 
been successful in demonstrating sev-
eral story understanding capabilities. 
One instance of this is its ability to 
determine that both Macbeth and the 
2007 Russia-Estonia Cyberwar involve 
revenge, even though neither the word 
‘revenge’ nor any of its synonyms are 
mentioned in accounts descr ibing 
those texts.

7. Discussion
Word- and concept-level approaches to
NLP are just a first step towards natural
language understanding. The future of
NLP lies in biologically and linguistical-
ly motivated computational paradigms
that enable narrative understanding and, 
hence, ‘sensemaking’. Computational in-
telligence potentially has a large future
possibility to play an important role in
NLP research. Fuzzy logic, for example, 
has a direct relation to NLP (Carvalho, 
Batista, & Coheur, 2012) for tasks such
as sentiment analysis (Subasic &
Huettner, 2001), linguistic summariza-
tion (Kacprzyk & Zadrozny, 2010),
knowledge representation (Lai, Wu, Lin, 
& Huang, 2011), and word meaning in-
ference (Kazemzadeh, Lee, & Narayanan, 
2013). Artificial neural networks can aid
the completion of NLP tasks such as
ambiguity resolution (Chan & Franklin, 
1998; Costa, Frasconi, Lombardo, &
Soda, 2005), grammatical inference
(Lawrence, Giles, & Fong, 2000), word
representation (Luong, Socher, & Man-
ning, 2013), and emotion recognition
(Cambria, Gastaldo, Bisio, & Zunino, 
2014). Evolutionary computation can be
exploited for tasks such as grammatical
evolution (O’Neill & Ryan, 2001), 
knowledge discovery (Atkinson-
Abutridy, Mellish, & Aitken, 2003), text
categorization (Araujo, 2004), and rule
learning (Ghandar, Michalewicz,
Schmidt, To, & Zurbruegg, 2009).

Despite its potential, however, the 
use of computational intelligence tech-
niques till date has not been so active 

in the field of NLP. The first reason is 
that NLP is a huge field currently tack-
ling dozens of different problems for 
which specific evaluation metrics exist, 
and it is not possible to reduce the 
whole field into a specific problem, as it 
was done in early works (Novak, 1992). 
The second reason may be that power-
ful techniques such as support vector 
machines (Drucker, Wu, & Vapnik, 
1999), kernel principal component 
analysis (Schölkopf et al., 1999), and la-
tent Dirichlet allocation (Mukherjee & 
Blei, 2009) have achieved remarkable 
results on widely used NLP datasets, 
which are not yet met by computation-
al intelligence techniques. All such 
word-based algorithms, however, are 
limited by the fact that they can process 
only the information that they can ‘see’ 
and, hence, will sooner or later reach 
saturation. Computational intelligence 
techniques, instead, can go beyond the 
syntactic representation of documents 
by emulating the way the human brain 
processes natural language (e.g., by le-
veraging on semantic features that are 
not explicitly expressed in text) and, 
hence, have higher potential to tackle 
complementary NLP tasks. An ensem-
ble of computational intelligence tech-
niques, for example, could be exploited 
within the same NLP model for on-
line learning of natural language con-
cepts (through neural networks), 
concept classification and semantic fea-
ture generalization (through fuzzy sets), 
and concept meaning evolution and 
continuous system optimization 
(through evolutionary computation).

8. Conclusion
In a Web where user-generated content
has already hit critical mass, the need for
sensible computation and information
aggregation is increasing exponentially, 
as demonstrated by the ‘mad rush’ in the
industry for ‘big data experts’ and the
growth of a new ‘Data Science’ disci-
pline. The democratization of online
content creation has led to the increase
of  Web debris, which is inevitably and
negatively affecting information retrieval
and extraction. To analyze this negative
trend and propose possible solutions, this



review paper focused on the evolution 
of NLP research according to three dif-
ferent paradigms, namely: bag-of-
words, word embeddings, and 
narrative understanding. Borrowing
the concept of ‘jumping curves’ from 
the field of business management, this 
survey article explained how and why 
NLP research is gradually shifting from 
lexical semantics to compositional 
semantics and offered insights on 
next-generation narrative-based NLP 
technology. 

Jumping the curve, however, is 
not an easy task: the origins of human 
lan-guage has sometimes been called 
the hardest problem of science 
(Christiansen & Kirby, 2003). NLP 
technologies evolved from the era of 
punch cards and batch processing (in 
which the analysis of a natural 
language sentence could take up to 7 
minutes (Plath, 1967)) to the era of 
Google and the likes of it (in which 
millions of webpages can be pro-cessed 
in less than a second). Even the most 
efficient word-based algorithms, 
however, perform very poorly, if not 
properly trained or when contexts 
and domains change. Such algorithms 
are limited by the fact that they can 
process only information that they 
can ‘see’. Language, however, is a 
system where all terms are 
interdependent and where the value of 
one is the result of the simulta-neous 
presence of the others (De Sau-ssure, 
1916). As human text processors, we 
‘see more than what we see’ (David-son, 
1997) in which every word acti-vates 
a cascade of semantically-related 
concepts that enable the completion 
of complex NLP tasks, such as word-
sense disambiguation, textual 
entailment, and semantic role labeling, 
in a quick and effortless way.

Concepts are the glue that holds our 
mental world together (Murphy, 
2004). Without concepts, there would 
be no mental world in the first place 
(Bloom, 2003). Needless to say, the 
ability to organize knowledge into 
concepts is one of the defining 
characteristics of the human mind. 
A truly intelligent system needs 
physical, social  and sensory knowledge
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about the way people think. Having a 
database of millions of common-
sense facts, however, is not 
enough for   computational natural 
language understanding: we will need 
to teach NLP systems how to 
handle this knowledge (IQ), but 
also interpret emotions (EQ) and 
cultural nuances (CQ).
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