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Abstract

Inductive reasoning is a core component of human intel-
ligence. In the past research of inductive reasoning within
computer science, logic language is used as representations
of knowledge (facts and rules, more specifically). However,
logic language can cause systematic problems for inductive
reasoning such as disability of handling raw input such as
natural language, sensitiveness to mislabeled data, and inca-
pacity to handle ambiguous input. To this end, we propose a
new task, which is to induce natural language rules from nat-
ural language facts, and create a dataset termed DEER con-
taining 1.2k rule-fact pairs for the task, where rules and facts
are written in natural language. New automatic metrics are
also proposed and analysed for the evaluation of this task.
With DEER, we investigate a modern approach for inductive
reasoning where we use natural language as representation
for knowledge instead of logic language and use pretrained
language models as “reasoners”. Moreover, we provide the
first and comprehensive analysis of how well pretrained lan-
guage models can induce natural language rules from natural
language facts. We also propose a new framework drawing in-
sights from philosophy literature for this task, which we show
in the experiment section that surpasses baselines in both au-
tomatic and human evaluations.

Introduction
Inductive reasoning is to reach to a hypothesis (usually a rule
that explains an aspect of the law of nature) based on pieces
of evidence (usually observed facts of the world), where the
observations can not provide conclusive support to the hy-
pothesis (Salmon 1989). It is ampliative, which means that
the hypothesis supports more than mere reformulation of the
content of the evidence (Norton 2005). An example is shown
in Table 1 that after observing three carnivorous plants each
having a trapping structure, one might reach to a hypothe-
sis (rule) that every carnivorous plant has a trapping struc-
ture. Inductive reasoning was firstly proposed by Aristotle
in the 4th century B.C. in his Posterior Analytics (Aristotle
1994). Since then it is used as a fundamental tool to obtain
axioms, and therefore subjects can be developed from these
axioms. It is also recognized as a core component of human
intelligence (Mercier 2018).

*Contribution during internship at Microsoft Research.

Past research works on inductive reasoning within com-
puter science are investigated by Inductive Logic Program-
ming (ILP) (Muggleton and De Raedt 1994). ILP inves-
tigates the inductive construction of first-order logic rules
from examples and background knowledge (Muggleton and
De Raedt 1994). However, ILP uses logic language as repre-
sentation and uses symbolic algorithms as method, which
results in systematic disadvantages (Cropper et al. 2022).
Specifically, ILP systems heavily rely on human effort, since
it typically assumes that the input has already been prepro-
cessed into symbolic declarative form, otherwise ILP sys-
tems cannot handle raw inputs such as natural language and
images. In addition, ILP systems are very sensitive to label
error and ambiguity in data, since the final induced rules are
required to satisfy all input facts, and symbolic systems can
not recognize different symbols with the same meaning (e.g.
be capable of, has the capability of, be able to).

To overcome the challenges above, we present a novel
paradigm for inductive reasoning based entirely on natural
language, i.e., inducing natural language rules from natu-
ral language facts. In particular, we create a first-of-its-kind
natural language inductive reasoning dataset named DEER
containing 1.2k rule-fact pairs 1. Specifically, human-written
natural language rule sentences are first collected. Based on
the collected rules, we then ask human annotators to collect
existing natural language texts as facts from the web where
each fact can be possibly enough to induce the given rule.
With this dataset, we investigate a modern approach to in-
ductive reasoning where both facts and rules are in natural
language, and pretrained language models (PLMs) are used
as the inductive reasoner to induce natural language rules
from natural language facts. Note that the inductive reason-
ing considered in this paper has several distinctions con-
sidered by other reasoning tasks over text (Clark, Tafjord,
and Richardson 2020; Bhagavatula et al. 2020; Sinha et al.
2019). We defer a more detailed discussion to section 2.

With natural language as representation and PLMs as the
reasoner, such an inductive reasoning system can avoid the
systematic disadvantages of logic language and symbolic
methods. Specifically, with natural language as representa-
tion, it can naturally handle raw input as natural language
text. In addition, different from symbolic methods, PLMs

1We will release our code and data after publication



Short fact 1 Short fact 2 Short fact 3 Rule

The Venus flytrap is a carnivorous
plant native to subtropical wetlands

on the East Coast of the United States
in North Carolina and South Carolina.

It catches its prey-chiefly insects
and arachnids—with a trapping structure

formed by the terminal portion of each
of the plant’s leaves, which is triggered

by tiny hairs on their inner surfaces.

Pitcher plants are several different
carnivorous plants which have modified

leaves known as pitfall traps—a prey
-trapping mechanism featuring a deep
cavity filled with digestive liquid. The

traps of what are considered to be ”true”
pitcher plants are formed by

specialized leaves. The plants attract
and drown their prey with nectar.

Drosera, which is commonly known
as the sundews, is one of the largest genera

of carnivorous plants, with at least
194 species. The trapping and digestion
mechanism of Drosera usually employs
two types of glands: stalked glands that

secrete sweet mucilage to attract and ensnare
insects and enzymes to digest them, and sessile
glands that absorb the resulting nutrient soup.

If a
plant is

carnivorous
, then it

probably
has a

trapping
structure.

Table 1: An example of inductive reasoning in DEER dataset. We embolden the words in facts that contain the key information
to induce this rule (just to explain the relation between facts and rule, in DEER there’s no special word annotations for fact).

contain knowledge via pretraining (Davison, Feldman, and
Rush 2019) and use embedding for concepts (Mikolov et al.
2013), making it less affected by input errors (Meng et al.
2021) and more robust to paraphrasing.

Based on the proposed dataset, we study the PLM’s abil-
ity to induce (generate) natural language rules from natu-
ral language facts. Specifically, we analyze the performance
of PLMs to induce natural language rules based on differ-
ent First-Order Logic (Smullyan 1995) rule types and topics
(e.g., zoology, botany, history), with varying input facts and
PLM model sizes.

We also propose a new framework for this task, named
chain-of-language-models (CoLM) which is shown in Fig-
ure 1. It draws insights from the requirements of rule in-
duction in philosophy literature (Norton 2005). Specifically,
CoLM consists of five modules all based on PLMs, where
one model proposes rules (rule proposer M1), and the other
four models (M2, M3, M4, M5) each classify whether a gen-
erated rule satisfies one particular requirement of induction.
In our experiments, we find that our framework surpasses the
baselines in terms of both automatic and human evaluations.

To sum up, our contributions are three-fold.
• We propose a new paradigm (task) of inducing natural

language rules from natural language facts, which natu-
rally overcomes three systematic disadvantages of past
works on inductive reasoning. In particular, we create
a first-of-its-kind natural language inductive reasoning
dataset DEER containing 1.2k rule-fact pairs, where fact
and rule are both written in natural language. New au-
tomatic metrics are also proposed for task evaluation,
which shows strong consistency with human evaluation.

• We provide the first and comprehensive analysis of how
well PLMs can induce natural language rules from natu-
ral language facts.

• Drawing insights from philosophy literature (Norton
2005), we propose a framework for inductive reasoning.
Empirically, we show that it surpasses baselines substan-
tially in both automatic and human evaluations.

Related Work
Definition of Inductive Reasoning
All non-fallacious arguments (an argument consisting of a
premise and a conclusion) can be classified as a deductive
argument or inductive argument (Flach and Kakas 2000). If

the premise can provide conclusive support for the conclu-
sion, which means that if the premises of the argument were
all true, it would be impossible for the conclusion of the ar-
gument to be false, the argument is called a deductive ar-
gument. Similarly, if the premise can only provide partial
support for the conclusion, the argument is called induc-
tive argument (Salmon 1989). Conclusions of inductive ar-
guments amplify or go beyond the information found in their
premises (Salmon 1989). In this paper, we call the premises
as “fact”, and conclusions as “rule”.

Inductive Reasoning & Neural Networks
Sinha et al. (2019) proposes CLUTRR dataset, which re-
quires NLU system to make classification on kinship rela-
tions between characters in short stories. In many examples
of this dataset, a set of facts that can make conclusive sup-
port to the target kinship relation is included in background
information as input for each target relation, hence from the
philosophical definition (Salmon 1989), these examples re-
quire to perform deductive reasoning more than inductive
reasoning. Misra, Rayz, and Ettinger (2022) investigates us-
ing neural networks for the classification of synthetic lan-
guage of sentences containing an object and a property. In
contrast to our work, they only focus on synthetic language
and classification problems. In addition, their classification
targets are not more general rules, and most are irrelevant
facts compared to input facts. One line of research that is
related to induction is “inductive relation induction” (Teru,
Denis, and Hamilton 2020). However, this task focuses on
prediction of relation that involves unseen entities, which
only involves an induction from specific entities to specific
entities, where we focus on the induction from specific enti-
ties or individual phenomenons to general knowledge. Yang
and Deng (2021) also works on rule induction, but their in-
duced rule is in quasi-natural language but not natural lan-
guage. The reasoner they adopted is symbolic, while we use
neural methods as PLM as inductive reasoner.

Inductive Logic Programming
Inductive Logic Programming (ILP) is a subfield of machine
learning that uses first-order logic to represent hypotheses
and data. It relies on logic language for knowledge represen-
tation and reasoning purposes (De Raedt 2010). We propose
a new paradigm that can naturally avoid three systematic dis-
advantages of ILP (Cropper et al. 2022).



Rule Template
(First Order Logic)

Rule Template
(Natural Language)

∀x, condition(x) =⇒ conclusion If , then .
∃x, condition(x) =⇒ conclusion There exists , which .
∀x, condition(x) [∧ condition(x)]+

=⇒ conclusion
If and , then .

∀x, condition(x) [∨ condition(x)]+

=⇒ conclusion
If or , then .

Table 2: The mapping relation between basic first-order
logic rule template and natural language rule template.

Relation with Other Reasoning Tasks
The goal is quite different from deductive reasoning as given
facts and rules and reach to new facts (Clark, Tafjord, and
Richardson 2020; Liu et al. 2020; Talmor et al. 2020; Po-
rada, Sordoni, and Cheung 2021). Rather, we want to induce
rules from facts, where rules are more general statements
than given facts. Our goal is also different from past works
on abductive reasoning as given facts and finding the casual
reasons for the facts (Bhagavatula et al. 2020). Rather, we
want to induce rules that generalize over fact itself and pos-
sibly can fit other circumstances.

Dataset Collection and Our Proposed
Evaluation Metrics

In this section, we discuss the data collection process for our
proposed dataset and our proposed metrics for automatic and
human evaluation of the models developed for the task.

In general, we propose two datasets. The first one,
termed DEER (inDuctive rEasoning with natural languagE
Representation), contains 1.2k rule-fact pairs, where rules
are written by human annotators in English, and facts are
existing English sentences on the web. The other one,
termed with DEERLET (classification of inDucEd rulEs
with natuRal LanguagE representaTion), including (fact,
rule, label0, label1, label2, label3) tuples, where facts are the
same as in DEER, rules are generated output from PLMs,
and label0/1/2/3 are classification labels describing different
aspects of induced rules. Specifically, rules in DEERLET are
collected from GPT-J (Wang and Komatsuzaki 2021) using
the in-context few-shot setting. We choose this setting be-
cause GPT-J is powerful enough (6 billion parameters) so
that a proportion of the generated rules are reasonable, but
not very accurate so that these generations and their annota-
tions can benefit the models finetuned on it.

DEER is used as the main dataset for the task, and DEER-
LET is used to measure the classification performance of
specific capabilities that are required by inductive reasoning
according to philosophy literature (Norton 2005).

Dataset Collection of DEER
We collect 1.2k natural language rule-fact pairs where rules
cover 6 topics and 4 common rule types of First-Order
Logic (Russell 2010). The 6 topics are zoology, botany, ge-
ology, astronomy, history, and physics. The 4 First-Order

Logic rule types are implications with universal quanti-
fier (∀x, condition(x) =⇒ conclusion), implica-
tions with existential quantifier (∃x, condition(x) =⇒
conclusion), conjunctive implications with universal quan-
tifier (∀x, condition(x) [∧ condition(x)]+ =⇒
conclusion), disjunctive implications with universal quan-
tifier (∀x, condition(x) [∨ condition(x)]+ =⇒
conclusion). As we hope to collect rules written in natural
language, we translate logic rules to natural language using
templates as shown in Table 2.

Natural language rule is firstly written by human ex-
perts, then for each rule 6 supporting facts, which consist
of 3 long facts and 3 short facts are collected from exist-
ing human-written text from commercial search engines and
Wikipedia. Long facts are paragraphs collected from differ-
ent web pages to ensure their difference, and short facts are
core sentences selected from corresponding long facts. Each
fact itself should contain enough information that is possible
to induce the full corresponding rule (an example of short
facts for a rule is shown in Table 1).

Sixty percent of the rules in DEER are more general than
any of their facts alone at least in one dimension. We de-
scribe this process as “inducing general rules from specific
facts”. However, we find that there are many general state-
ments (also referred to as general fact) of a rule on the web.
Therefore, for rule induction systems to be able to utilize
both “specific facts” and “general facts”, forty percent of the
rules in DEER are equipped with general facts. We describe
this process as “inducing general rules from general facts”.

To validate the correctness of the DEER dataset, we ran-
domly split DEER data to 4 subsets, and 4 graduate students
manually check each of the subsets on whether each fact
contains enough information that is possible to induce the
given rule and whether the specifc/general labels are cor-
rect. The overall correctness of the sampled DEER data is
95.5%.

The reason that DEER is not larger is that it requires ex-
perts who are familiar enough with inductive reasoning and
possesses a relatively high level of science knowledge to an-
notate.

Dataset Collection of DEERLET
DEERLET is a dataset collected by a human expert in induc-
tive reasoning for classification tasks to evaluate the specific
capabilities required by inductive reasoning. It contains 846
tuples with format (fact, rule, label0, label1, label2, label3).
Among the tuples, 546 are used for training, 100 for valida-
tion, and 200 for testing. Here, facts are directly from DEER,
but the corresponding rules are collected from PLMs, and
label0 to label3 are classification labels evaluating specific
aspects of the generated rules. The reason in DEERLET we
collect rules from the generation of PLMs is that we want to
avoid human annotation biases (Amidei, Piwek, and Willis
2020).

We develop label 0/1/2 based on the requirements of in-
duced rules in philosophy literature (Norton 2005), and de-
velop label 3 based on a NLP aspect of the problem. In par-
ticular, label0 measures whether a rule is not in conflict with
its fact; Label1 measures whether a rule fits commonsense;



Generated rules
with top

0%∼top10%
BLEU

Generated rules
with top

10%∼top20%
BLEU

...

Generated rules
with top

90%∼top100%
BLEU

Weight weight0(45) weight1(35) ... weight9(−45)
Recall recall0 recall11 ... recall9

Table 3: Illustration of the weights and recalls in WRe-
call, one of our proposed automatic evaluation metrics. Here
weights reflect the importance of blocks of generated rules.

Label2 measures whether a rule is more general than its fact,
as inductive reasoning is “ampliative”, and requires the in-
duced rule to have higher coverage than facts (Norton 2005).
Appendix 7 illustrates label2 with more details. Label3 mea-
sures whether a rule is not trivial (mostly incomplete sen-
tence or the latter part is a repetition of its former part).

Inspired by Obeid and Hoque (2020), label 0/1/2 are an-
notated on a 3-point scale (true / partially true / false), and
label 3 are annotated on a 2-point scale (true / false). More
details on annotation of DEERLET are illustrated in Ap-
pendix 7.

Adopted and Our Proposed Evaluation Metrics
Human Evaluation Metric DEERLET provides human
annotations for evaluation of the generated rules from four
different aspects. Here we use precision / recall / f1, and the
four aspects in DEERLET for human evaluation,

Automatic Evaluation Metric For the DEER dataset, as
it requires generating rules based on input facts, the first met-
ric we adopt is METEOR (Banerjee and Lavie 2005), which
has been widely used for evaluating machine-generated text
quality. Appendix 7 compares METEOR and BLEU (Pap-
ineni et al. 2002), and illustrates the reasons why METEOR
should be a better metric for this task.

More specifically, we calculate the averaged METEOR
score of the generated rules (after filtering, if a model had
a filtering phase). From the observation that even humans
still constantly make mistakes on inductive reasoning, we
assume any framework for this task might (but not necessar-
ily) contain two phases as generation and filtering to obtain
higher performance. However, if with a filtering phase, ME-
TEOR only considers the rules that are not filtered.

It makes the METEOR metric here a similar metric to
“precision”, as it only calculates the score for rules that are
classified as “true”. As a result, the model might have a low
recall in that it might only keep the rule with the highest
confidence score, and classify many reasonable good rules
as “false”.

To measure the “recall” of inductive reasoning models,
we propose “weighted recall (WRecall)” as the second au-
tomatic evaluation metric for this task. The difficulty lies
in that we don’t have the ground truth labels for generated
rules without human evaluation. To calculate WRecall, we
make an assumption, which is that the higher METEOR a
rule has, generally the higher probability it is a reasonable
rule for given facts. This assumption is reasonable given

the relatively high correlation coefficient between METEOR
and human evaluation shown in Appendix 7. Specifically, as
shown in table 3, we can first calculate the METEOR for
each generated rule, and sort them based on the value of
METEOR. Then we calculate the recall value for each block
of generated rules, during which we assume only the rules
in that block have “true” ground truth label. We also add a
linearly changing weight for each block according to their
importance. To ensure WRecall is in the range [0,1], WRe-
call is linearly normalized:

WRecall =

∑9
i=0 weighti ∗ recalli + 125

250
(1)

Now that we have a METEOR metric that provides a sim-
ilar measurement of “precision”, and WRecall for “recall”,
we propose GREEN (GeometRic mEan of METEOR aNd
WRecall) to consider METEOR and WRecall together. It is
defined as a geometric mean instead of a harmonic mean be-
cause METEOR is not in the range [0, 1]. More specifically,
GREEN is calculated as:

GREEN =
√
METEOR ∗WRecall (2)

In general, compared with METEOR, GREEN gives a
more comprehensive evaluation of the induced rules. There-
fore GREEN can be a more favorable metric when the recall
is an important factor (e.g., when computational power is
limited). However, when the precision of the induced rules
is more favored, METEOR should be a more proper metric
than GREEN. Appendex 7 discusses more on the importance
of each metric for this task.

Methodology
In this section, we formally present the task definition and
our proposed framework for natural language inductive rea-
soning. Figure 1 illustrates the general architecture of our
proposed approach.

Task Definition
DEER dataset is used as the dataset for the natural language
inductive reasoning task. The data format for DEER is (rule,
fact), where both rule and fact are natural language sen-
tences. The goal of the task is to generate reasonable natural
language rules given fact, where the rules should be more
general and therefore cover more information than fact.

Our Framework
Hypothetical Induction is an important induction type in in-
ductive reasoning (Norton 2005). It can be understood as
when people make observations, they might propose a hy-
pothesis as a general rule that can entail the observations.
For example, when people observe that the Sun rises and
falls every day, they might induce a hypothesis that the Earth
is rotating itself, which is more general than the observa-
tions as the hypothesis can also help to explain the observ-
able movements of the other Milky Way stars relative to the
Earth.

Hypothetical induction fits our task well, as in DEER we
also want to induce a hypothesis as a more general rule that



Fact

Rule Proposer

Module 1
Generalization 

Checker 
(PM4(fact|rule))

Module 4  
Deductive 

Consistency 
Evaluator 

(PM2(fact|rule))

Module 2
Indiscriminate  
Confirmation 

Handler 
(PM3(rule))

Module 3

Rules Rules Rules Rules Triviality 
Detector 
(PM5(rule))

Module 5  

Rules

Figure 1: Our proposed framework (CoLM) for inductive reasoning with natural language representation task. Rule Proposer
is a generative model based on input facts and desired rule template, aiming at generating (a large number of) rule candidates.
Deductive consistency evaluator, indiscriminate confirmation handler, generalization checker, and triviality detector are classi-
fication models that filter improper rules according to four requirements of the induced rules in inductive reasoning.

can entail the facts. We borrow insights from the require-
ments for the induced rules in hypothetical induction to de-
velop our framework. Specifically, there are mainly three re-
quirements (Salmon 1989; Norton 2005). The first is that
a correct hypothesis should be able to entail deductively as
many observations as possible. The second is that the hy-
pothesis should follow the laws of nature, as one could al-
ways concoct some imaginary hypothesis that is able to ex-
plain the observations but violates reality (e.g., the Earth
is the center of the Universe so that the Sun orbits around
the Earth). In inductive reasoning, the failure to recognize
a rule that runs counter to reality is called “indiscriminate
confirmation”. The third is a basic requirement for inductive
reasoning, where the hypothesis should be a more general
statement than the observations (Appendex 7 illustrates the
meaning of “general”). We additionally introduce a fourth
requirement from NLP aspects since this task uses natu-
ral language as knowledge representation. It is that a rule
should not be trivial (e.g. incomplete sentence or the latter
sub-sentence simply repeats its former sub-sentence).

More concretely, we define the requirements for design-
ing our framework as 1) there should be as fewer contradic-
tions between facts and the rule as possible, and 2) the rule
should comply with commonsense, 3) the content in facts
should be specific statements that are covered by the rule, 4)
the rule should not be trivial.

Based on this, we develop our framework as shown in Fig-
ure 1. It consists of five modules, where module 1 (M1) is
the rule proposer, module 2 (M2) is the deductive consis-
tency evaluator, module 3 (M3) is the indiscriminate confir-
mation handler, module 4 (M4) is the generalization checker,
and module 5 (M5) is the triviality detector. Specifically, M1
is in charge of the generation of rules. M2, M3, M4, M5
are independent classification models each verifying rules
with different requirement. The role of M2/3/4/5 is similar to
the verifier developed for deductive reasoning to make more
solid reasoning steps (Yang, Deng, and Chen 2022). The in-
dependence of M2/3/4/5 makes it possible to run them in
parallel.

In practice, we implement all five modules with pre-
trained language models. We call our implementation as
CoLM (Chain-of-Language-Models). The goal of M1 is to
generate rules based on the input facts and a given rule tem-
plate. Thus, M1’s input contains facts, a rule template, and

prompts that demonstrate the rule induction task.M2 and
M4’s inputs include prompts that explain the rule-fact com-
patibility, a rule, and a fact; M3 and M5’s input includes
again prompts that explain the task and a rule, as their tar-
gets are independent of fact.

More interestingly, although our framework is solely
based on the insights from philosophy literature, we also find
a mathematical interpretation of this approach. Here, we de-
note P (A) as the probability indicating whether A is valid
for simplicity. Thus, M2 and M4 jointly measure the valid-
ness of a fact given the corresponding rule P (fact|rule) ≈
PM24(fact|rule) = PM2(fact|rule)PM4(fact|rule), M3
and M5 directly measure the validness of the rule itself
P (rule) ≈ PM35(rule) = PM3(rule)PM5(rule). By us-
ing Bayes’ rule, we can easily show that the validness of a
rule based on the input fact is

P (rule|fact) ≈ PM24(fact|rule)PM35(rule). (3)

Note that this score is merely a discrimination score and
thus different from the generation probability from M1. In
other words, the rules proposed by M1 are then selected by
M2/3/4/5 in a Bayesian inference fashion.

Experiments
In this section, we discuss the evaluation metrics and base-
lines and then present the main results of our framework.

Evaluation Metrics
We carry out evaluations for the overall framework (the
rule generation task with DEER) and individual modules for
classification using DEERLET.

For evaluation of the rule generation of the overall frame-
work, we use METEOR, WRecall, and GREEN as auto-
matic evaluation metrics; And use precision, recall, f1, and
the four metrics in DEERLET as human evaluation metrics.
WRecall, GREEN, and the four metrics in DEERLET are
our newly proposed metrics for inductive reasoning intro-
duced in Section 3.

For evaluation of the classification tasks on DEERLET,
we use accuracy, f1, and averaged precision as metrics.

Baselines
We use a non-neural method and a neural method as base-
lines for the framework. We call the non-neural baseline



Models METEOR WRecall GREEN precision (%) recall (%) f1 consistent commonsense general non-trivial

R+F 11.20 0.50 2.37 9.0 100.0 0.17 0.90 0.15 0.28 0.85
M1 25.49 0.50 3.57 45.0 100.0 0.62 0.63 0.60 0.83 0.86

M1 + M2 25.77 / 27.71 0.52 / 0.59 3.64 / 4.04 45.9 / 59.8 87.8 / 71.1 0.60 / 0.65 0.63 / 0.75 0.62 / 0.72 0.83 / 0.92 0.86 / 0.94
M1 + M3 25.57 / 27.44 0.50 / 0.59 3.59 / 4.03 45.2 / 60.2 84.4 / 75.6 0.59 / 0.67 0.63 / 0.77 0.60 / 0.74 0.83 / 0.89 0.87 / 0.91
M1 + M4 25.84 / 26.90 0.51 / 0.59 3.62 / 3.99 48.5 / 53.3 92.2 / 88.9 0.64 / 0.67 0.64 / 0.67 0.64 / 0.65 0.84 / 0.91 0.88 / 0.89
M1 + M5 25.54 / 25.97 0.50 / 0.53 3.58 / 3.72 46.1 / 48.1 97.8 / 97.8 0.63 / 0.65 0.64 / 0.66 0.61 / 0.63 0.83 / 0.83 0.88 / 0.91

CoLM 26.30 / 29.07 0.53 / 0.57 3.74 / 4.08 48.1 / 70.0 72.2 / 54.4 0.58 / 0.61 0.65 / 0.81 0.64 / 0.80 0.84 / 0.94 0.90 / 0.97

Table 4: Result of our proposed framework and baselines on DEER under in-context few-shot / finetuning setting. The first
three metrics are automatic metrics, and the last seven metrics are human evaluation metrics.

“R+F”, as it randomly fills the given rule template with sen-
tences or phases from the given fact. The neural baseline we
use is the rule proposer itself in Figure 1.

We use majority class and TF-IDF (Jones 1972) as base-
lines for individual modules. The majority class baseline
always predicts “yes”, which is equivalent to not using
M2/3/4/5 to filter rules from M1. TF-IDF is another rea-
sonable baseline as the induced rules contain similar con-
tents compared to input facts. In practice, each input fact-
rule pair is assigned a TF-IDF value, and a threshold for
correctness (to compare with the TF-IDF value) is tuned on
the DEERLET validation set.

Main Results
All modules are implemented with GPT-J (Wang and Ko-
matsuzaki 2021), a pre-trained language model with 6 bil-
lion parameters. For better analysis, we conduct the ex-
periments in three settings, including zero-shot setting, in-
context few-shot setting (Liu et al. 2021; Brown et al. 2020a)
and finetuning setting. The only exception is that we do not
test finetuning setting on M1 (the only generative module),
since we are mainly investigating (out of box) pretrained
large language model’s ability. However if with finetuning,
language model might perform worse on out-of-distribution
data and lose their generality for input facts from different
topics (Kumar et al. 2022). For this reason we do not imple-
ment with T5 (Raffel et al. 2020) but with GPT-J.

To save space, we only report the results of in-context
few-shot setting and finetuning setting in Table 4 and Ta-
ble 5, leaving the zero-shot results in the appendix. The
thresholds of M2/3/4/5 used in Table 4 and Table 5 are tuned
on the DEERLET validation set. More details on setting up
thresholds are illustrated in Appendix 7.

The results on DEER are shown in Table 4. As expected,
the M1 alone outperforms the R+F baseline across the board,
indicating that the PLM has some rule induction capabil-
ity. Augmenting the M1 with some filtering mechanism can
reliably improve the generated rule quality further. Lastly,
our full model, CoLM, outperforms all baselines justifying
the effectiveness of our proposed framework for natural lan-
guage inductive reasoning.

The results on DEERLET are summarized in Table 5.
In this experiment, we investigate the classification perfor-
mance of language models in terms of different aspects
required by inductive reasoning, which includes deductive
consistency, indiscriminate confirmation, and generalization

Metrics Accuracy (%) F1 Averaged Precision
Deductive Consistency Evaluator (M2)

Majority class 62.5 0.769 0.63
TF-IDF 62.5 0.769 0.69

GPT-J 61.5 / 74.0 0.71 / 0.83 0.75 / 0.83
Indiscriminate Conformation Handler (M3)

Majority class 60.0 0.750 0.60
TF-IDF 60.0 0.750 0.64

GPT-J 56.0 / 70.5 0.57 / 0.77 0.66 / 0.79
Generalization Checker (M4)

Majority class 83.0 0.91 0.83
TF-IDF 83.0 0.91 0.86

GPT-J 71.0 / 86.0 0.82 / 0.92 0.87 / 0.97
Triviality Detector (M5)

Majority class 86.0 0.93 0.86
TF-IDF 86.0 0.93 0.90

GPT-J 78.5 / 89.5 0.87 / 0.94 0.89 / 0.94

Table 5: Results on DEERLET for different modules under
in-context few-shot / finetuning settings.

/ triviality classification. It shows that TF-IDF achieves the
same performance with majority class baseline in accuracy
and f1 metrics. The reason is that the best thresholds ob-
tained for TF-IDF are all zero, which means that TF-IDF
value is not effective for the four tasks. It also shows that
the few-shot GPTJ performs worse than the majority class
baseline, while finetuned GPTJ steadily performs better.

Analysis
In this section, we investigate the question of “how well can
pretrained language models perform inductive reasoning?”.
Specifically, we provide analyses in terms of rule types, top-
ics, variations of input fact, and scales of language models.
Except for Table 9, the input used is short fact, 3 fact, full
fact. Except for Table 2, the model used is GPT-J. All exper-
iments in this section are based on the in-context few-shot
setting, each averaged by 5 runs. Similar trends are also ob-
served in other settings. We report METEOR and GREEN
as metrics in this section.

Different Rule Types
Table 6 shows the breakdown evaluation of CoLM based on
four basic rule types in logic language (Russell 2010). The



Models If ,
then .

There exists ,
which .

If and ,
then .

If or ,
then .

R+F 9.87 / 2.22 17.45 / 2.95 10.63 / 2.30 12.53/ 2.50
M1 22.65 / 3.37 31.92 / 4.00 26.25 / 3.62 28.75 / 3.79

M1+M2 22.90 / 3.44 33.04 / 4.38 26.44 / 3.66 28.61 / 3.72
M1+M3 23.01 / 3.48 32.16 / 3.99 25.69 / 3.44 29.03 / 3.87
M1+M4 22.43 / 3.26 32.44 / 4.18 27.15 / 3.75 29.21 / 3.94
M1+M5 22.70 / 3.38 32.47 / 4.14 26.27 / 3.63 28.72 / 3.79
CoLM 23.23 / 3.51 33.46 / 4.38 27.06 / 3.73 29.20 / 3.92

Table 6: Analysis of PLM (GPT-J)’s performance (measured
in METEOR / GREEN) in with different rule templates.

Models Zoology Botany Astronomy Geology History Physics

R+F 9.65 / 2.20 10.24 / 2.26 13.09 / 2.56 13.28 / 2.58 11.07 / 2.35 11.44 / 2.39
M1 29.29 / 3.83 30.47 / 3.90 34.01 / 4.12 28.28 / 3.83 23.61 / 3.44 18.69 / 3.06

M1+M2 30.01 / 4.04 30.34 / 3.84 34.34 / 4.21 28.40 / 3.79 23.79 / 3.49 19.04 / 3.18
M1+M3 29.06 / 3.70 30.40 / 3.88 33.37 / 3.90 28.55 / 3.84 23.83 / 3.49 19.00 / 3.19
M1+M4 29.95 / 3.94 31.02 / 4.03 34.26 / 4.19 28.81 / 3.96 24.47 / 3.63 18.76 / 3.10
M1+M5 29.34 / 3.84 30.47 / 3.91 34.12 / 4.15 28.40 / 3.79 23.53 / 3.39 18.77 / 3.07
CoLM 29.92 / 3.88 30.93 / 4.00 34.06 / 4.11 28.95 / 3.94 24.94 / 3.71 19.54 / 3.35

Table 7: Analysis of PLM (GPT-J)’s performance (measured
in METEOR / GREEN) in under different topics.

mapping between the logic forms and corresponding natural
language templates can be found in Table 2.

The table shows that “there exists , which ” achieves
the best performance. It is reasonable, as simply copying the
contents of facts to compose a rule will be acceptable for ∃
quantifier in logic.

Different Topics

Table 7 shows the performance of CoLM over different top-
ics. CoLM performs much worse on History and Physics
than on the other topics. We attribute the reasons to that the
rules in history and physics have high variance, demand a
higher level of abstraction, and are not very similar to the
input facts. For example, in physics, many rules are natu-
ral language descriptions of physical laws such as Newton’s
law of universal gravitation, while the input facts might be
the values of gravitational force and mass of specific objects.
In contrast, CoLM achieves better performance in Botany.
One possible reason is that many rules in botany can be very
similar to the input facts (an example is shown in Table 1).

Models Specific facts General facts

R+F 10.15 / 2.25 12.79 / 2.53
M1 26.37 / 3.63 24.18 / 3.48

M1+M2 26.76 / 3.75 24.42 / 3.53
M1+M3 26.54 / 3.68 24.15 / 3.45
M1+M4 26.74 / 3.70 24.64 / 3.57
M1+M5 26.39 / 3.63 24.28 / 3.51
CoLM 27.39 / 3.86 24.89 / 3.63

Table 8: Analysis of PLM (GPT-J)’s performance (measured
in METEOR / GREEN) in with specific or general input
facts.

Models Long facts
1 full facts

Short facts
1 full facts

Short facts
2 full facts

Short facts
3 full facts

Short facts
3 missing facts

R+F 9.35 / 2.16 10.87 / 2.33 11.16 / 2.36 11.20 / 2.37 11.52 / 2.40
M1 23.79 / 3.45 25.13 / 3.54 25.65 / 3.58 25.49 / 3.57 25.11 / 3.54

M1+M2 24.00 / 3.50 25.36 / 3.63 25.89 / 3.64 25.77 / 3.64 25.30 / 3.59
M1+M3 23.94 / 3.49 25.39 / 3.61 25.87 / 3.63 25.57 / 3.59 25.33 / 3.62
M1+M4 23.92 / 3.44 25.27 / 3.55 25.93 / 3.62 25.84 / 3.62 25.35 / 3.55
M1+M5 23.80 / 3.46 25.30 / 3.61 25.74 / 3.61 25.54 / 3.58 25.15 / 3.56
CoLM 24.15 / 3.50 25.79 / 3.68 26.48 / 3.76 26.30 / 3.74 25.73 / 3.66

Table 9: Analysis of PLM (GPT-J)’s performance (measured
in METEOR / GREEN) with different input lengths and
whether fact contains enough information.

Variations of Input Facts

Table 8 shows the result from specific vs general facts. In
section 3 we have discussed that a rule induction system
would be more widely applicable if it can utilize both spe-
cific fact and general fact. In table 8, general facts cases re-
sult in lower performance. We think one of the most possible
reasons is that in DEER many general facts do not directly
contain the content of the corresponding gold rules. For ex-
ample, general facts can be mottos from philosophers such
as Socrates, and rules can be an understandable description
of such mottos in natural language rule format.

In table 9, long facts mean the paragraph-level facts in
DEER, and short facts mean the core sentence-level facts
selected from corresponding paragraph-level facts. The dif-
ferent number of facts indicates the different number of
facts given as input that exhibit similar rule patterns (e.g.
Lemon tree / orange tree / apple tree can conduct photo-
synthesis). We consider the number of facts as an important
factor because psychological research shows that more facts
with similar patterns can help with inductive reasoning (Heit
2000). Missing fact experiments are also conducted, where
for each fact we randomly throw the former half or the latter
half of the sentences. It is an important setting as it is hard
for the input facts to cover all the elements of the desired
rule in a realistic scenario. As a result, it might be common
that some required pieces of fact are missing. The results
indicate that larger number of concise but full facts are ben-
eficial for rule induction, while too many facts with similar
patterns might not be helpful.

Different Scales of PLMs

Figure 2 shows the influence of the scale of pre-trained lan-
guage models (under in-context few-shot setting) on induc-
tion. Here, we consider GPT-Neo 125M, GPT-Neo 1.3B,
GPT-Neo 2.7B, GPT-J 6B and GPT-NeoX 20B (Wang and
Komatsuzaki 2021). The figure shows that generally perfor-
mance of M1 steadily improves as the scale being larger,
and M2/3/4/5 are only helpful since 6B parameters. The
only exception is that both M1 and M2/3/4/5 might reach
a plateau in 20B parameters. We did not use GPT-3 (Brown
et al. 2020b) to analyze scale since M2/3/4/5 need embed-
dings for prediction, but the API of GPT-3 does not support
return full embeddings.
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Figure 2: Influence of the scale of PLM on inductive reason-
ing task with DEER (measured with METEOR).

Future Work and Challenges
The new paradigm of using natural language as the repre-
sentation of knowledge and using PLMs as the inductive
reasoner for inductive reasoning opens the possibility of au-
tomatically inducing rules on the countless web corpus. On
the other hand, there are still remaining challenges in this di-
rection as not all facts can be used to induce rules. Many fact
pieces in DEER for a single rule are collected from differ-
ent places on the web, so that the input contains enough and
proper information to induce rules. However, when using the
web corpus, it is hard to ensure that input facts contain such
information. As a result, it is challenging to reliably obtain
high-quality facts that can be utilized to induce rules.

Conclusion
To overcome the systematic problems of using logic
language for inductive reasoning, we propose a new
paradigm (task) of inducing natural language rules from nat-
ural language facts, and correspondingly propose a dataset
DEER and new evaluation metrics for this task. We provide
the first and comprehensive analysis of pretrained language
models’ ability to induce natural language rules from natural
language facts. We also propose a new framework drawing
insights from philosophy literature, which show in the ex-
periment section that surpasses baselines in both automatic
and human evaluations.
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Appendix
Annotation Details for DEERLET
In DEERLET, given fact(s) and a rule, the annotation targets
are whether the rule satisfies four requirements.

Specifically, the requirements are “if the rule is deduc-
tively consistent with the fact”, “if the rule fits common-
sense”, “if the rule is more general than the fact”, and “if
the rule is not trivial”.

The first three requirements are annotated on a 3-point
scale (true / partially true / false), and the last is annotated
on a 2-point scale (true / false).

Here we explain the standards of annotation on the four
requirements.

For “if the rule is deductively consistent with the fact”,
a 2-point will be assigned if the rule is totally relevant and
consistent with the facts; a 1-point will be assigned if the
rule introduces new information that does not show in facts
but is consistent with the given fact as well as some limited
amount of commonsense knowledge related to the facts; a 0-
point will be assigned if the rule is (1) in conflict with given
facts or (2) totally irrelevant to given facts or (3) introduces
new information that is obviously wrong.

For “if the rule fits commonsense”, a 2-point will be as-
signed if the rule totally fits commonsense; a 1-point will be
assigned if the rule fits commonsense at most of the time; a
0-point will be assigned if (1) the rule is totally incorrect or
(2) the rule is only occasionally correct.

For “if the rule is more general than the fact”, a 2-point
will be assigned if (1) the rule is more general than the facts
or (2) it is obvious that the rule is trying to be more general
than the facts; a 1-point will be assigned if (1) it is even hard
for humans to induce a more general rule from the given
facts or (2) the rule copies part of the given facts that are al-
ready containing very general information; a 0-point will be
assigned if (1) from the facts it’s easy for humans to induce
a more general rule but the rule is not more general or (2)
the rule is totally irrelevant to the facts.

For “if the rule is not trivial”, a 0-point will be assigned
if (1) the rule is an incomplete sentence or (2) the latter sub-
sentence of the rule only repeats the information in the for-
mer sub-sentence of the rule; otherwise, a 1-point will be
assigned.

METEOR or GREEN?
Since inductive reasoning over natural language is a new
task, and new metrics are designed (e.g., WRecall, GREEN),
it is important to understand which aspects each metric focus
on and which metric should we pay more attention to.

As mentioned in section 3, METEOR can be seen as eval-
uating the “precision” of the final rules, while GREEN eval-
uates “precision” and “recall” at the same time.

However, it should be aware that the “recall” here is not
as important as the “recall” in other tasks. More specifically,
here “recall” measures how many good rules generated by
M1 are filtered by M2/3/4/5. However, we can use M1 to
generate a large number of rules, and as long as CoLM has
good precision, it is easy to obtain a large number of high-

quality rules, especially considering that the computational
cost of only inference of M1 is relatively very low.

Based on this observation, we argue that “precision”
should be a much more important aspect of evaluation com-
pared to “recall” (measured by WRecall) or even “f1” (mea-
sured by GREEN) for this task. More specifically, “recall”
can be used to mainly measure at what efficiency can the
system obtain rules with high precision.

This viewpoint of evaluation metrics, of course, can raise
the question of whether some typical kinds of rules are
mostly filtered when pursuing rules with high precision, and
in the end inductive reasoning system with high precision
might only be able to obtain some other typical kinds of
rules. We leave this question as an open question for this
task to solve in the future.

Why METEOR not BLEU
We choose METEOR since METEOR has a higher correla-
tion coefficient with human evaluation than BLEU.

More specifically, on DEERLET, we calculate the ME-
TEOR and BLEU for each generated rule with its golden
rule in DEER and collect the human evaluation for the gen-
erated rule from label0/1/2/3 annotations in DEERLET (we
normalize each label to [0,1] and use the product of la-
bel0/1/2/3 as the overall human evaluation score for the gen-
erated rule). Then, we can calculate the correlation coef-
ficient between METEOR / BLEU and the overall human
evaluation score.

On DEERLET, the correlation coefficient between ME-
TEOR and human evaluation is 0.29, it is statistically sig-
nificant as its p-value is 4.48 ∗ 10−6, smaller than the sig-
nificance level (0.05). Similarly, the correlation coefficient
between BLEU and human evaluation is 0.24, with p-value
of 1.17 ∗ 10−72, which is also significant.

It shows that there is a relatively strong correlation be-
tween METEOR and human evaluation, which means that
METEOR can be a sound automatic evaluation metric for
inductive reasoning in the DEER dataset. We attribute the
relatively high correlation to the data collection process of
DEER, where facts are collected to support the rule. There-
fore the facts are highly related to the ground truth rule, and
it is relatively hard to induce a reasonable alternative that is
significantly different from the ground truth. The reason we
hypothesize empirically for the correlation coefficient not
being higher is that (1) synonyms and variants of phrases
exist; (2) there is only one golden rule provided instead of
multiple; (3) sometimes the rules are not totally relevant to
the given fact, but extend it with information that is not men-
tioned in facts.

Developing better metrics for measuring the similarity be-
tween sentences is a challenging topic in NLP. Of course,
METEOR is not a “perfect” automatic evaluation metric for
inductive reasoning. We leave the question of “what is a bet-
ter metric for inductive reasoning over natural language” as
an open question for future works in the field. One good
thing is that WRecall and GREEN can be applied with many
metrics measuring sentence similarity such as METEOR and
BLEU, so the evaluation of “recall” should be able to also



benefit from the advance of metrics that evaluate “preci-
sion”.

Meaning of “More General” Required by
Inductive Reasoning
The “more general” required by inductive reasoning means
the scope of information coverage is larger.

For instance, if facts are about cats and dogs are good
accompaniment of humans, then some examples of “more
general” rule can be (1) mammals are good accompaniment
of humans or (2) domesticated animals are good accompa-
niment of humans or (3) animals with four legs are good
accompaniment of human.

In these examples, the rules cover a larger scope than the
facts (e.g., mammals compared to cats; domesticated ani-
mals compared to cats), and therefore the rules are “more
general” than the facts.

“More general” means not only about finding higher tax-
onomic rank, but can be in unlimited forms. For instance, if
the fact is about the Sun rises and falls every day, then some
examples of “more general” rule can be (1) the Earth is the
king of the universe or (2) the Earth is rotating itself.

Both rule examples are “more general” than the given
fact, since the rule can entail not only the given fact, but also
other not mentioned facts such as the observable movements
of the other stars in the Milky Way.

Set up Thresholds for M2/3/4/5
Setting up thresholds is an important step for our framework,
since different thresholds can lead to different inductive rea-
soning results. We discuss the details of setting up thresholds
in the section.

We design the standard for setting up thresholds based
on heuristics that the thresholds should be set up that each
module (in M2/3/4/5) should filter some rules but a single
module should not filter too many rules (in this case, since
we have many modules, there might not remain a reasonable
proportion of rules left).

More specifically, given a rule (and facts), M2/3/4/5 can
produce a score on evaluating the validity of the rule from
a specific aspect. The score is the ratio of the probability of
the “yes” token and “no” token obtained from the last layer
of PLM. The score is in the range of [0,1].

We find that getting a specific threshold for each module
is more beneficial than using the default 0.5 threshold. We
obtain the thresholds on the DEERLET validation set.

More concretely, on the validation set, if there exists a
global optimal threshold that (1) achieves the best f1 or accu-
racy and (2) the threshold should not be very close to 0 or 1
and (3) recall is not very close to 0 (when close to 1, it should
not be in the case that the threshold accepts nearly all gen-
erated rules but should be that the threshold already rejects
some rules), then the global optimal threshold is adopted; if
there is no such global optimal threshold, then find a local
optimal threshold that (1) achieves the best f1 or accuracy
compared to its neighboring thresholds and (2) the threshold
should not be very close to 0 or 1, and (3) the recall range is
in [0.7, 0.9], then the local optimal threshold is adopted.
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