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Abstract-Objective sentences lack sentiments and, hence, can 
reduce the accuracy of a sentiment classifier. Traditional methods 
prior to 2001 used hand-crafted templates to identify subjectivity 
and did not generalize well for resource-deficient languages 
such as Spanish. Later works published between 2002 and 2009 
proposed the use of deep neural networks to automatically learn 
a dictionary of features (in the form of convolution kernels) 
that is portable to new languages. Recently, recurrent neural 
networks are being used to model alternating subjective and 
objective sentences within a single review. Such networks are 
difficult to train for a large vocabulary of words due to the 
problem of vanishing gradients. Hence, in this paper we consider 
use of a Lyapunov linear matrix inequality to classify Spanish 
text as subjective or objective by combining Spanish features 
and features obtained from the corresponding translated English 
text. The aligned features for each sentence are next evolved 
using multiple kernel learning. The proposed Lyapunov deep 
neural network outperforms baselines by over 10% and the 
features learned in the hidden layers improve our understanding 
subjective sentences in Spanish. 

I. INTRODUCTION 

Subjectivity detection can prevent the sentiment classifier 
from considering irrelevant or potentially misleading text 
[1]. This is particularly useful in mUlti-perspective question 
answering summarization systems that need to summarize dif­
ferent opinions and perspectives and present multiple answers 
to the user based on opinions derived from different sources. 
It is also useful to analysts in government, commercial and 
political domains who need to determine the response of the 
people to different crisis events [2], [3]. 

Subjectivity detection approaches in the 1990's used well 
established general subjectivity clues to generate training data 
from un-annotated text [1]. In addition, features such as 
pronouns, modals, adjectives, cardinal number, and adverbs 
showed to be effective in subjectivity classification. Some 
existing resources contain lists of subjective words, and some 
empirical methods in natural language processing (NLP) have 
automatically identified adjectives, verbs, and n-grams that are 
statistically associated with subjective language [4]. However, 
several subjective words such as may occur infrequently, 
consequently a large training dataset is necessary to build a 
broad and comprehensive subjectivity detection system. 

Existing approaches to subjectivity detection can be grouped 
into three main categories: keyword spotting, lexical affinity, 
and statistical methods [5]. 
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Keyword spotting is the most naIve approach and probably 
also the most popular because of its accessibility and economy. 
Text is classified into categories based on the presence of 
fairly unambiguous words. One scheme uses the concept of 
private - state that is a general term for opinions and emo­
tions that are positive or negative [1]. The phrase "Injustice 
cannot last long" contains a negative private state. Human 
annotators are used to judge the strength of each private state 
as low, medium, high or extreme. A sentence is subjective if 
it contains a private state and all other sentences are objective. 

Similarly, [6] created a rule-based subjectivity dataset us­
ing a list of subjectivity clues and patterns. Next, a NaIve 
Bayes classifier was trained on extraction patterns as well as 
pronouns, adjectives, cardinal numbers and adverbs features 
in subjective and objective sentences. The drawback of their 
approach was that they assume that low subjectivity score 
sentences may be objective. However, it is difficult to identify 
objective sentences since any objective sentence can be made 
subjective using a subjective modifier. Some authors have 
shown that in some patterns may be highly correlated with 
objectivity in a particular domain. For example in Wall Street 
journals, sentences containing 'price' or 'profit' are likely to 
be objective. 

Lexical affinity is slightly more sophisticated than keyword 
spotting as, rather than simply detecting obvious words, it 
assigns to arbitrary words a probabilistic 'affinity' for a 
particular category. In [1], the authors ranked patterns using the 
conditional probability given by the frequency of a pattern in a 
subjective sentence given the total frequency of each pattern in 
all training sentences. For example, all sentences that contain 
the verb 'asked' in the passive voice are subjective. Similarly, 
expressions involving the noun 'fact' are highly correlated 
with subjective expressions. The drawback with this approach 
is that it is unable to identify objective patterns effectively 
resulting in false positives. 

Subjectivity detection in foreign languages was proposed 
by translating English lexicons in [7]. However, translation 
requires the lemmatized form of words which can lead to loss 
of subjective form. For example, the lemma form of 'mem­
ories' is 'memory' , when translated to Romanian becomes 
'memorie' with an objective meaning 'the power of retaining 
information' . Spanish sentences were first translated to English 
and then used to train a subjectivity classifier in [8]. 

978-1-5090-0620-5/16/$31.00 ©2016 IEEE 4474 



However, translation of sentences can lead to loss of lexical 
information such as word sense resulting in a low accuracy. 
Similarly, in [9] the authors tried to minimize the resources to 
build a subjectivity lexicon in foreign languages. They used 
bootstrapping to sample subjective clues from a few manually 
selected seed words. In each iteration, candidate words with 
low similarity with the original seed list are discarded. The 
method is limited by the fact that suitable seed words may be 
difficult to determine in some domains or languages. Further, 
with each bootstrap iteration the noise in the subjectivity 
dataset keeps increasing. 

Recently, the idea to learn a shared deep representation from 
multiple languages in a common space has been proposed 
[10]. Here, the objective function minimizes the distance 
between two parallel sentences in both languages. However, 
this can lead to loss of information. The main difference of 
our method from [11] is that instead of using a tree structure 
to determine causality while training an auto-encoder with 
aligned sentences from English and German, here we consider 
a hierarchy of feature detectors where lower level features 
are learned using convolution and the higher level features 
are learned using recurrent neural networks (RNNs) guided 
by a Lyapunov stability constraint. We refer to the resulting 
framework as Lyapunov deep neural network (LDNN). In the 
next section, we describe related work and outline of the paper. 

II. REL ATED WORK AND CONTRIBUTIONS 

Endogenous NLP methods automatically learn concepts 
from documents by training state space graphs where nodes are 
the words and the arc determine causal dependencies among 
them in large documents [12], [13]. In this way, no prior 
semantic understanding of documents or linguistic databases 
are needed [14]. For example, conditional random fields 
(CRFs) are commonly used for sequence labeling tasks such 
as part-of-speech (PaS) tagging, named-entity recognition, 
and shallow parsing [15]. Here, shallow parsing is used to 
summarize relevant information from documents by labelling 
each word as + 1 or -1 denoting that it is included or excluded 
from the summary. A Bayesian network is able to represent 
subjective degrees of confidence. The representation explicitly 
explores the role of prior knowledge and combines pieces of 
evidence of the likelihood of events. In order to compute the 
joint distribution of the belief network, there is a need to 
know p(Plparents(P)) for each variable P. It is difficult to 
determine the probability of each variable P and also difficult 
a statistical table for large-scale inference. Semantic networks, 
on the other hand, represent knowledge in patterns of inter­
connected nodes and arcs. Definitional networks focus on IsA 
relationships between a concept and a newly defined sub-type. 
The result of such a structure is called a generalization, which 
in turn supports the rule of inheritance for copying properties 
defined for a super-type to all of its sub-type. WordNet is an 
example of a well known semantic network [16]. The methods 
described above focus on English language, hence to allow for 
portability to foreign languages such as Spanish or Arabic, 
deep convolutional neural networks (CNNs) that can learn a 

dictionary of common features are suitable. For instance, we 
can assume that synonyms convey the same orientation and 
antonym relations convey an inverse sentiment in the foreign 
language after translation. Next, feature relatedness graphs are 
built for the foreign language using mappings from foreign 
senses to the English senses available in Word Net. In a deep 
neural network (DNN), the lower layers learn abstract concepts 
and the higher layers learn complex features for subjective 
sentences. 

CNNs are sensitive to the order of words in a sentence and 
do not depend on external language specific features such as 
dependency or constituency parse trees [17]. Here narrow or 
wide convolution is achieved by applying filters such as pattern 
templates across the input sequence of words. A convolution 
layer in the network is obtained by convolving a matrix of 
weights with the matrix of activations at the layer below and 
the weights are trained using back propagation [18]. Next 
to model sentiment flow, in [19], the authors used recurrent 
CNN to model the dynamics in dialogue tracking and question 
answering systems. However, they assume that the data is uni­
modal. 

The significance and contributions of the research work 
presented in this paper can be summarized as follows: 

• We propose a framework for subjectivity detection in 
Spanish by automatically extracting convolution features 
in Spanish and the translated English form of each 
sentence. The aligned features of both languages for each 
sentence are then combined using RNNs and multiple 
kernel learning (MKL). 

• A linear matrix inequality has been developed to de­
rive the stability criteria for multi-lingual subjectivity 
detection. Our results show that the proposed framework 
outperforms baselines on two benchmark datasets. 

• We show how lexical resources in English such as sub­
jectivity clues, pas tags and word sense disambiguation 
(WSD) can be effectively transferred from English to 
Spanish. 

To verify the effectiveness of LDNN in capturing dependen­
cies in high-dimensional data and its portability on language 
translation task we consider MPQA Gold corpus of 504 
sentences manually annotated for subjectivity in Spanish [7], 
[6]. Here, we try to develop a subjectivity lexicon for Spanish 
language using the available resources in English. 

Next, to evaluate the method on a very large dataset we use 
the TASS corpora that is a collection of Spanish tweets com­
monly used for the evaluation of social media analysis tasks 
[20]. It is the evaluation framework used in different editions 
of the TASS workshop on Sentiment Analysis for Spanish. 
It includes collections for sentiment analysis, topic modeling, 
political analysis or aspect-based sentiment analysis, among 
other challenges. The classification accuracy obtained using 
the proposed LDNN is shown to outperform the baseline by 
over 10% on both real datasets. 

The rest of the paper is organized as follows: Section III 
provides the preliminary concepts necessary to comprehend 
the proposed LDNN algorithm of the present work. In section 
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IV, we introduce the Lyapunov linear matrix inequality for 
learning the weights of a RNN from both Spanish and English 
features. Lastly, in section V, we validate our method on real 
world benchmark datasets. 

III. PRELIMINARIES 

We briefly review the theoretical concepts necessary to 
comprehend the present work. This is followed by the linear 
matrix inequalities that ensure stable convergence of the multi­
lingual model. We begin with a description of conditional 
restricted Boltzmann machines (CRBM). Layers of CRBM 
result in a deep model for sentence classification. Next, we 
explain RNNs and the relation of convolution features to 
temporal features. We also describe MKL to combine features 
from different languages. 

A. Deep Neural Networks 

A DNN can be viewed as a composite of simple, unsuper­
vised models such as restricted Boltzmann machines (RBMs) 
where each hidden layer serves as the visible layer for the 
next RBM. RBM is a bipartite graph comprising two layers 
of neurons: a visible and a hidden layer; where the connections 
among neurons in the same layer are not allowed. 

To train such a multi-layer system, we must compute the 
gradient of the total energy function E with respect to the 
weights in all the layers. To learn such weights and maxi­
mize the global energy function, the approximate maximum 
likelihood contrastive divergence approach can be used. This 
method employs each training sample to initialize the visible 
layer. Next, it uses the Gibbs sampling algorithm to update 
the hidden layer and then reconstruct the visible layer con­
secutively, until convergence. As an example, here we use a 
logistic regression model to learn the binary hidden neurons 
and each visible unit is assumed to be a sample from a normal 
distribution. The continuous state hj of the hidden neuron j, 
with bias bj, is a weighted sum over all continuous visible 
nodes v and is given by: 

(1) 

where Wij is the connection weight to hidden neuron j from 
visible node Vi. The binary state hj of the hidden neuron can 
be defined by a sigmoid activation function: 

1 
hj = , , 

1 + e-hj 
(2) 

Similarly, in the next iteration, the continuous state of each 
visible node Vi is reconstructed. Here, we determine the state 
of visible node i, with bias Ci, as a random sample from the 
normal distribution where the mean is a weighted sum over 
all binary hidden neurons and is given by: 

Vi = Ci + L hiWij, (3) 

j 
where Wij is the connection weight to hidden neuron j from 
visible node i. This continuous state is a random sample from 
N(vi, a), where a is the variance of all visible nodes. 

Unlike hidden neurons, visible nodes can take continuous 
values in a Gaussian RBM. Lastly, the weights are updated as 
the difference between the original and reconstructed visible 
layer labelled as the vector Vrecon using: 

(4) 

where a is the learning rate and < vihj > is the expected 
frequency with which visible unit i and hidden unit j are active 
together when the visible vectors are sampled from the training 
set and the hidden units are determined by (1). Finally, the 
energy of a DNN can be determined in the final layer using: 

E = -L VihjWij, 
i,j 

(5) 

To extend the DNN to a convolutional deep neural network, 
we simply partition the hidden layer into Z groups. Each of 
the Z groups is associated with a nx x ny filter where nx is 
the height of the kernel and ny is the width of the kernel. Let 
us assume that the input image has dimension Lx x Ly. Then 
the convolution will result in a hidden layer of Z groups each 
of dimension (Lx - nx + 1) x (Ly - ny + 1). These learned 
kernel weights are shared among all hidden units in a particular 
group. The energy function of layer I is now a sum over the 
energy of individual blocks given by: 

z (Lx-nx+l),(Ly-ny+l) 
El=-L L 

z=l i,j 
nx,ny 

L Vi+r-l,J+s-lhfjw�s· 
r,s 

(6) 

Hence, each layer of a deep convolution neural network is 
referred to as a convolution RBM (CRBM). In such a model 
the lower layers learn abstract concepts and the higher layers 
learn complex features for subjective sentences. 

B. Recurrent Neural Networks 

The delay equation for a RNN with distributed time delays 
and several system modes that follows a Markov process r(t) 
is given as follows: 

x(t + 1) = -Ax(t) + Wo(r(t))f(x(t)) (7) 

+W1(r(t))gl(X(t - T)) + W2(r(t)) J:_/2(X(t)dt 
y(t) = C(r(t))x(t) + f(t,x(t)) 

where Igk(X) - gk(y)1 :s IGk(X - y)I'v'x,y 
and If(x) - f(y)1 :S IF(x - y)I'v'x, y 

where A is a diagonal matrix of degradation rates of the neu­
rons, Wo(r(t)), W1(r(t)) and W2(r(t)) are the connection 
weight matrix, the discretely delayed connection weight ma­
trix, and the distributively delayed connection weight matrix, 
C is the output weight matrix, the system is in mode r(t) at 
time instant t, gk, f are the activation functions that satisfy the 
Lipschitz condition with known constant scale matrix Gk, F, 
x( t) is the state of the neurons and x( t -T) is the input shifted 
in time by T delays. 
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Fig. 1. Illustrates the state space of a LDNN for a subjective sentence in a movie review. Features are extracted in Spanish as well as English using two 
deep CNNs. The extracted features are combined using a RNN with Lyapunov stability constraint. Lastly, MKL classifier is trained using the features learned 
by the RNN. The bold lines correspond to kernels. The second layer has kernels of width 3_ and the fourth layer has kernels of width 4. The third and fifth 
layer are pooling layers shown as dashed lines. 

In this paper, we propose to learn distributed time-delayed 
dependence W2(r(t)) using CNNs. Hence, a kernel of width 
k is able to capture distributed delays of up to k and is given 
by the covariance matrix of features learned in the penultimate 
layer using (4). To learn the weights Wo(r(t)) and Wl(r(t)) 
of the RNN, back propagation through time is used where 
the hidden layer is unfolded in time using duplicate hidden 
neurons. 

C. Multiple Kernel Learning 

MKL uses the sequence of sentences s(l), s(2), ... , s(T) 
and the corresponding target labels y(t) E {Subj,Obj} to 
train a classifier of the dual form : 

1 T T ( M 

) 
max min -L L aiajy(i)y(j) L f3mKm(s(i), s(j)) 

(3 a 2 i=l j=l m=l 

T M 

T 

-"a L " i=l 

S.t L aiy(i) = 0, L 13m = 1, 0 :::; ai :::; CVi. (8) 
i=l m=l 

where M is the total number of positive definite Gaussian 
kernels Km(s(i), s(j)) each with a set of different parameters 
and ai, b and 13m � 0 are co-efficients to be learned simulta­
neously from the training data using quadratic programming_ 

IV. LYAPUNOV DEEP NEUR AL NET WORK FRAMEWORK 

In this section we propose a novel linear matrix inequality 
(LMI) that ensures stable convergence of multi-lingual DNN 
to the optimal solution. The proposed framework is hence 
referred to LDNN_ Next, we describe the complete flow chart 
for merging lexical resources in Spanish and English. 

A. Lyapunov Stability Condition 

In this section, we provide the LMI for stable convergence 
of RNN using V(t) as the Lyapunov function for the error 
function e(t) of (7): 

V(t) = X(tfPie(t) + f:
_/(sfQle(s)ds (9) 

+fOft 

e(T)fQ2e(T))dT)ds 
T t+s 

where i is the state of the Markov chain r( t), Pi > 0, Ql ;?O, 
Q2;?0, Ql = EliG[Gl, Q2 = E2iGIG2, for positive scalars 
Eli, E2i > 0 and Gl, G2 are known scale matrices of the 
activation functions. To this end, we first provide a lemma that 
combines the different time-delay weight matrices, similar to 
[21]. 

Lemma 1 : If there exist matrix Pi, Ri and positive scalars 
EOi, Eli > 0 such that the linear matrix inequality in Table 
I holds, where "iij are the transition probabilities of Markov 
process r(t), then the RNN is globally asymptotically stable. 

Proof: As given in [21] 
where Ki = Pi-l Ri, is the gain matrix to be designed. 
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Spanish 
CNN k-gram Features 

Pooling 

5 Nuestro lanzador es mucho mejor de 10 que se ha mostrado 

5 Las estadisticas dificilmente indicaron que los Piratas 

necesitaban pr,kticas de bateo adicionales pero ayer Murtaugh 

tambien so1t6 a sus hombres en el Estadio Bush 

o Hasta que los bates de los Bues se calmaron un poco en Cincinnati 

durante el fin de semana los campeones tuvieron echo hombres 

golpeando mas de 3ee 

Bi-lingual RNN 
Temporal Features 

English 
CNN k-gram Features 

Kernel 
Wi(j=4 

Kernel 
Width = 3 

S Our pitching is much better than it has shown 

5 The statistics hardly indicated that the Pirates needed extra 

batting practice but Murtaugh also turned his men loose at Busch 

Stadium yesterday 

o Until the Bues bats quieted down a bit in Cincinnati over the 

weekend the champions had eight men hitting over 3ee 



TABLE I 
LINEAR MATRIX INEQUALITY FOR LYAPUNOV STABILITY AND GAIN CORRECTION 

-AiP, - PiA, - RiCi + C'[ R'[ + L"ijPj FiWOi EOiCr 
Wo";?' -EOil 0 

EOiGO 0 -EOi1 
Wl�Pi 0 0 

fliGl 0 0 

wi: Pi 0 0 

E2�iG2 0 0 

R'[ 0 0 
E3iF 0 0 

For the case of CNNs, we initialize the distributed time­
delay weight matrix W2i with the covariance matrix of deep 
CNN output, the predicted class in each layer can hence be 
corrected by multiplication with gain matrix K3 for distributed 
time delays T in that layer. 

Figure 1 the state space of a LDNN for a subjective sentence 
in a movie review. Features are extracted in Spanish as well 
as English using two deep CNNs. The extracted features are 
combined using a RNN with Lyapunov stability constraint. 
Lastly, MKL classifier is trained using the features learned by 
the RNN. The bold lines correspond to kernels. The second 
layer has kernels of width 3, and the fourth layer has kernels 
of width 4. The third and fifth layer are pooling layers shown 
as dashed lines. 

B. Spanish Sentiment Model 

In this section, we describe the entire framework of com­
bining Spanish and English resources. Subjectivity clue words 
such as 'good' , 'happy' , 'sad' are available for English lan­
guage. These were translated to obtain the corresponding list 
in Spanish using the Bing translator API. Since words may 
have different subjectivity when used in different forms such 
as 'noun' or 'verb' , hence POS tagging was done for all 
training sentences in Spanish and English. Gaussian Bayesian 
networks were constructed over subjectivity clues with highest 
frequency as described in [22]. The phrases corresponding to 
high ML structures were used to select important sentences 
that are used to pre-train the deep neural network. The deep 
CNN where each layer is a CRBM was used to extract 
features in the form of 3-grams and 4-grams in each language 
separately. Next, we align the English and Spanish features 
for a single sentence to form a single sample of features 
in the training set. The new training data is used to train a 
RNN. In order to ensure stable convergence the RNN output 
is multiplied with a suitable gain matrix as explained in 
Section IV-A. Lastly, the low-dimensional features learned at 
the hidden neurons of the RNNs are further evolved using 
a multiple-kernel learning classifier (MKL). Since the word 
sense changes when translating from Spanish to English, we 
can get rid of some false positives by verifying the subjectivity 
of each sentence using Spanish WSD database. Figure 2 
illustrates the Spanish Sentiment Model that combines lexical 
resources in Spanish with English. 

PiWli EliTG[ PiW2i E2iTG'f Ri E3iPT 
0 0 0 0 0 0 
0 0 0 0 0 0 

-Eli] 0 0 0 0 0 
0 -Eli] 0 0 0 0 <0 

0 0 -£2i1 0 0 0 
0 0 0 -E2�iI 0 0 

0 -0 0 0 -E3i! 0 
0 0 0 0 0 -E3i! 

Fig. 2. Illustrates the Spanish Sentiment Model that combines lex.ical 
resources in Spanish with English. 

V. EXPERIMENT S 

We applied our proposed algorithm to two real world 
problems. The two datasets were real world data collected 
from Spanish news articles and Spanish tweets. The first was 
a small dataset to classify the sequence of sentences in a 
news article as subjective or objective. The second was a 
very large dataset of Spanish tweets that can belong to any 
of four categories namely positive, negative, neutral or none. 
Performance measures such as F-measurel and mean square 
classification error were evaluated using true positives (TP), 
false positives (FP), true negatives (TN), and false negatives 
(FN), respectively in the network reconstructed at the visible 
layer. 

A. Preprocessing 

The data pre-processing included removing top 50 stop 
words and punctuation marks from the sentences2. Next, we 
used a POS tagger to determine the POS for each word in a 
sentence. 

IF-measure =2 Precision X Recall 
Precision+ Recall 

2http://www.ranks.nllstopwords/ 
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Subjectivity clues dataset [1] contains a list of over 8,000 
clues identified manually as well as automatically using both 
annotated and un-annotated data. Each clue is a word and the 
corresponding POS. The frequency of each clue was computed 
in both subjective and objective sentences of the MPQA 
corpus. Here, we consider the top 50 clue words with highest 
frequency of occurrence in the subjective sentences. We also 
performed chunking of the sentences into top 25 concepts that 
are correlated in a vector space of emotions as described in 
[23], [24], [25]. 

In order to determine the optimal structure among the top 
words and concepts in subjective and objective sentences, each 
of the sentences in the training set was transformed to a binary 
feature vector where presence of a top word is denoted as 
'1' and absence is denoted as '0' . Since each sentence is 
dependent on the previous sentence in the article; the resulting 
matrix of words versus frequency is a time series. It must be 
noted that each word in a sentence is also dependent on the 
preceding words. 

We use multivariate Gaussian Bayesian fitness function to 
extract the maximum likelihood (ML) probabilities of each 
word given up-to three parent words and up-to two time points 
delay. Such sub-structures are referred to as network motifs. 
Top 20% of Motifs with high ML are used to select the training 
sentences for the CNN. 

1) Translating subjectivity clues: MPQA subjectivity clues 
are just available for English. To get the correspondence for 
Spanish, we followed a cross-lingual approach using an statis­
tical machine translation system [26]. Particularly, we relied 
on the free API provided by https: llwww.bing.com/translator/. 

2) Taggers: To exploit the subjectivity clues, we trained 
POS taggers, both for English and Spanish. To do that, we 
consider the universal POS tag set introduced in [27] and that 
is included as a part of the Universal Dependency Treebanks 
v2.0 [28]. The latter already provides official splits for training, 
development and test sets for training taggers and dependency 
parsers. There exist specific resources for POS tagging of 
tweets [29]. However, to the best of our knowledge, there 
only are available resources for training English models. In 
this context, we preferred to used the universal tag sets, to 
make more homogeneous and comparable the results between 
the two languages. To train the taggers we relied on the free 
distribution of the maximum-entropy tagger proposed in [30], 
that showed improvement on the labeling of unknown words, 
which used to drop accuracy of classical taggers [31], and 
can be considered as an advantage when dealing with tweets, 
where a larger percentage of unknown words tend to appear. 

3) Word Sense Disambiguation for Spanish: We rely on 
Babelfy to apply word-sense disambiguation on the Spanish 
texts. Babelfy3 is an state-of-the-art multilingual framework 
for WSD and entity linking [32]. In terms of WSD, it follows 
a knowledge-based approach by exploiting relations between 
word meanings from BabelNet [33]. 

3http://babelfy.org 

Given an input text, the substrings matching a BabelNet 
entity are analyzed and their candidate meanings are ranked, 
by previously computing a graph-based semantic interpreta­
tion. As a result, we obtain the most coherent meaning of 
that expression within the input text, including additional 
information such as its POS tag. In this way, we can determine 
if a word is a real subjectivity clue or if it has a different 
meaning. For example, the word 'fine' can be a noun with 
negative sentiment in 'They put me a fine, because I was 
driving too fast' or a positive adjective in 'I feel really 
fine today' . Selecting the right subjectivity clue is crucial to 
correctly analyze both sentences. 

B. Subjectivity Classification on the MPQA Gold Corpus 

In order to evaluate the portability of the proposed method 
on language translation task we consider another MPQA 
Gold corpus of 504 news sentences manually annotated for 
subjectivity in Spanish [6]. The annotation resulted in 273 
subjective and 231 objective sentences as described in [7]. 
The sentences are machine translated into English to obtain 
the training dataset. This corpus is small, as the annotators 
need to be trained with annotation guidelines in Spanish. Some 
sentences are difficult to annotate as Objective or Subjective 
and, hence, are annotated by several different annotators. 
However, it is a popular benchmark used by previous authors, 
and can evaluate the robustness of LDNN when few training 
samples are present. 

The CNN is collectively pre-trained with both subjective 
and objective sentences that contain high ML word and con­
cept motifs. The word vectors are initialized using a context 
window of size 5 and 30 features. Each sentence is wrapped 
to a window of 50 words to reduce the number of parameters 
and, hence, the over-fitting of the model. A deep CNN with 
three hidden layers of 100 neurons and kernels of size {3, 4, 5} 
and one logistic layer of 300 neurons is used. The output layer 
corresponds to two neurons for each class of sentiments. The 
300 feature outputs of deep CNN from both languages are 
used to train a recurrent NN with 10 hidden neurons and up­
to 2 time point delays. These 10 features are then used to 
train the MKL classifier. Lastly, we check the word sense of 
each sentence predicted as subjective using the WSD lexicon 
by Babelfy. We used lO-fold cross validation to determine the 
accuracy of the trained CNN classifier on new sentences. 

Table II shows that LDNN outperforms previous methods 
by 5-15% in accuracy. A comparison was done with baseline 
classifiers such as rule-based classifier [7], bootstrapping based 
classifier [9], SVM and NaIve Bayes [8]. The Bootstrapping 
method starts with a set of seed words in Spanish and 
iteratively includes new words into the lexicon with maximum 
similarity in each Bootstrap or iteration. Such a method is 
unable to capture the temporal dependence between sentences. 
By using a layer of recurrent neurons, we are able to learn 
time-delayed features for polarity changes within a single 
review. Lastly, WSD and rule based classifiers are heavily 
dependent on templates and do not consider the relative 
positions between nouns and verbs. 
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TABLE II 
F-MEASURE BY DIFFERENT MODELS FOR CLASSIFYING SPANISH 

SENTENCES IN A DOCUMENT AS SUBJECTIVE AND OBJECTIVE IN MPQA 
GOLD DATASET. 

Model Type F-measure 
Obj 0.52 

Rule Based [7] Subj 0.32 
Total 0.44 
Obj 0.52 

Bootstrapping [9] Subj 0.32 
Total 0.43 

SVM [8] 
NaIve Bayes 0.62 

SVM 0.62 
Obj 0.8l±0.03 

LDNN Subj 0.87±0.02 
Total 0.84±0.02 

Visualizing learned text features: To visualize the learned 
features we consider the 4-grams in the test set that show 
highest activation when convolved with the learned kernels. 
Here, we simply consider the root mean square error between 
predicted 4-gram kernel vectors and the prior word-vectors 
for each 4-gram learned using co-occurrence data. Table III 
shows features with highest activation at the hidden neurons 
in proposed LDNN for 'Subjective' and 'Objective' sentences 
in the Gold MPQA corpus. It can be seen that our method 
captures subjective and objective sentiments in 3-grams very 
accurately, the objective 3-grams are factual while the objec­
tive 3-grams are strongly positive or negative comments. It is 
apparent that by using both languages we can have a larger 
feature set. 

C. Sentiment Classification on the TASS 2015 Corpus 

The TASS corpora is a collection of Spanish tweets com­
monly used for the evaluation of social media analysis tasks. 
It is the evaluation framework used in different editions of the 
TASS workshop on Sentiment Analysis for Spanish [20]. 

In this paper, we are using the training set of 7219 tweets 
by 150 public figures coming from politics, sports or com­
munication. The tweets were collected during the year 2011-
2012. Each one is annotated with one of these four categories: 
positive, neutral, negative, or without opinion. This allow 
both to carry out coarse- and fine-grained sentiment analysis 
evaluations. 

A test subset containing 1000 tweets with a similar dis­
tribution to the training corpus and manually labelled. This 
allows to counteract some of the limitations of the corpus 
made by pooling (e.g., most of the systems might fail the 
same tweet, assigning to this one a wrong label and the 
frequency distribution of the classes was not representative 
of the training set). Table IV shows accuracy by different 
models for classifying sentences in a document as Positive 
(Subjective), Negative (Subjective), Neutral (mixed) or None 
in TASS test dataset. A simple CNN model for sentences 
learns features of two or three words using sliding window 
kernels. We also compare our approach with different models 
evaluated at the TASS workshop (see the overview paper [20] 
for a detailed description of all approaches). 

In LYS [34], the authors used classical logistic regression 
with linguistic features. Their approach was limited as they 
relied heavily on polarity lexicons that are not available in 
Spanish, instead in this paper we use convolution deep learning 
to automatically learn features from both English and Spanish. 
Further, instead of a single layer classifier, we learn hierarchy 
of feature detectors that can capture long reviews efficiently. 

Visualizing Gain Correction in Features: Figure 3 shows 
shows a single predicted feature with (Y*) and without (Y) 
gain correction. It can be seen that by using a linear matrix 
inequality it is possible to amplify the underlying signal for 
easier classification. 

Fig. 3. This figure shows a single predicted feature with (Y*-red) and without 
(Y-blue) gain correction. It can be seen that by using a linear matrix inequality 
it is possible to amplify the underlying signal for easier classification. 

VI. CONCLUSION 

In this paper, we have proposed a framework for filtering 
noise or objective sentences automatically from Spanish text. 
This is achieved by extracting features from both Spanish and 
the translated English form using two separator deep neural 
networks. The features are combined using MKL. 

The DNN has layers of CRBM followed by layers of RNN 
to capture temporal features. A linear matrix inequality has 
been developed to derive the stability criteria for multi-lingual 
subjectivity detection. Our results show that the proposed 
LDNN outperforms baselines on two benchmark datasets. 

In this way we show that lexical resources in English such 
as Subjectivity Clues, Parts of Speech Tags and WSD can be 
effectively transferred to Spanish for large scale datasets such 
as Twitter. 

TABLE IV 
ACCURACY BY DIFFERENT MODELS FOR CLASSIFYING SENTENCES IN A 

DOCUMENT AS POSITIVE(SUBJECTIVE), NE GATIVE(SUBJECTIVE), 
NEUTRAL(OBJECTlVE) OR NONE IN TASS DATASET. 

LDNN 
TASS 2015 0.884 
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TABLE 1Il 
FEATURES LEARNED AT THE HlDDEN NEURONS IN PROPOSED LDNN FOR 'SUBJECTIVE' & 'OBJECTIVE' SENTENCES IN THE GOLD MPQA CORPUS. 

Model English Spanish 
sweet good considerate mother Esto es un acertijo para (This is a riddle for) 

Subjective upset financially wise professional de justicia social tan grande (as great social justice) 
money side suffers losses guiar al golpeador mas duro (guide the hardest puncher) 
1899 Parliament erected statue este siglo principalmente por (This century mainly by) 

Objective plot modest rural cemetery empleado americano de Edison Edwin (American Edison employee Edwin) 
well dominated television end Nieman dijo que me quedara con (Nieman said stay with) 
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