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A B S T R A C T

As the order of the utterances in a conversation changes, the meaning of the utterance also changes, and
sometimes, this will cause different semantics or emotions. However, the existing representation learning
models do not pay close attention to capturing the internal semantic differences of utterance caused by the
change of utterance order. Based on this, we build a self-supervised utterance order prediction approach
to learn the logical order of utterance, which helps understand the deep semantic relationship between
adjacent utterances. Specially, the utterance binary composed of two adjacent utterances, which are ordered or
disordered, is fed to the self-supervised model so that the self-supervised model can obtain firm representation
learning ability for the semantic differences of the adjacent sentences. The self-supervised method is applied
to the downstream conversation emotion recognition task to test the value of the approach. The features
extracted from the self-supervised model are fused with the multimodal features to obtain a richer utterance
representation. After that, emotion recognition models are applied to two different datasets. The experiment
results show that our proposed approach outperforms the current state of the art on ERC benchmark datasets.
1. Introduction

Affective computing has witnessed a sort of renaissance due to the
recent developments in artificial intelligence [1]. Emotion Recognition
in Conversations (ERC), in particular, is an affective computing task
that is becoming increasing popular. It aims at recognizing the emotion
of each utterance spoken in conversations, and the research can be
used in various related applications, such as building effective dialogue
systems [2,3], aiding social viewpoint mining [4,5], and building intel-
ligent medical systems [6,7]. Current research on ERC focuses on the
emotional information of the speaker in the current emotional state by
analyzing contextual information and establishing different contexts for
different speakers or using multimodal data to support this task.

Despite recent progress, two major issues still remain unaddressed:
(1) How to ensure emotional consistency. (2) The creation of contextual
information. The current research works are roughly divided into two
categories: the first is to obtain the context representation of utterances
based on a temporal neural network, and the second is to obtain long-
distance information based on the graph networks. DialogueCRN [8]
extracts and integrates emotion cues by building context reasoning
networks.
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cambria@ntu.edu.sg (E. Cambria).

ICON [9] and DialogueRNN [10] obtain utterance dependencies in
different contexts by modeling different speakers with recurrent neural
networks. To overcome the weakness of such networks in dealing with
long information, they use the attention mechanism. On the other
hand, DialogueGCN [11] obtains context information by constructing
a directed graph, where the nodes denote utterance and the edges
denote the relationship between utterances pair containing two types
of relationships. RGAT [12] employs the relation-aware graph atten-
tion networks with embedding utterance relational position to take
sequential information into account.

All these approaches, however, ignore an important fact: when the
utterance order changes, the utterance meaning also changes, which
may have different utterance emotions. Fig. 1 shows one such example.
The change in utterance order leads to a change in the inner meaning
of the utterance, resulting in a difference in speakers’ emotions. In
this paper, we investigate the impact of utterance orders on the ERC
task and present a self-supervised model to predicting the utterance
order. The model can capture the potential semantic information for
the adjacent utterances by predicting whether the adjacent utterance is
ordered.
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Fig. 1. The utterance order of speaker A and speaker B change. This change leads to dramatic differences in meaning of utterance spoken by speaker B which result in different
emotion of this utterance.
When there is an emotion-shift in adjacent utterances, the potential
semantic information of the utterances has a more significant impact
on emotions. Two adjacent utterances are sampled to form an utterance
pair used in the pre-trained model. Specifically, we first process word
embedding of utterance pairs using the BERT-large model, after which
the utterance pair features are fed into the transformer for further fea-
ture extraction. Then, the model predicts utterance pairs’ order. After
that, the model is applied to the downstream emotion recognition mod-
els. In this paper, we use DialogueRNN [10], BiERU [13], HiTrans [14],
DialogueCRN [8], DAG [15]. The intermediate representations of the
pre-trained model are obtained to enrich each model’s local features
of utterance. In the experimental stage, extensive experiments are
conducted on emotion datasets IEMOCAP [16], and MELD [17].

To validate the proposed approach, the self-supervised model is
applied to multiple emotion recognition models to improve their ability
to recognize emotion, and the results are highly competitive compared
to the latest results. The main contributions of this paper are as follows:

(1) We propose a self-supervised utterance order prediction method
for conversation. It is the first time that a self-supervised approach
has been used for ERC.

(2) The model can enhance the semantic understanding of utterances
in the conversation context by predicting whether the adjacent
utterances are orderly. Thus, the features extracted by the self-
supervised model are more effective on the downstream ERC
task.

(3) The experiments are conducted on several emotion recognition
models on IEMOCAP and MELD datasets. The results, which
demonstrate the effectiveness of our proposed method on IEMO-
CAP, outperform recent state-of-the-art methods.

The remainder of the paper is organized as follows: Section 2 lists
related works; Section 3 describes the proposed approach; Section 4
presents experiments and discusses results; finally, Section 5 offers
concluding remarks.
2

2. Related work

Affective analysis can be used in dialogue systems [18], public
opinion analysis [19,20], ElectroEncephaloGraphy [21,22], emotion
cause entailment [23,24], finance [25], and more. Among them, ERC
has been receiving much attention in the field of sentiment analysis
about its potential applications in conversational systems [26,27]. At
the same time, more and more datasets are proposed for conversation
emotion recognition research, such as IEMOCAP [16], MELD [17],
DailyDialog [28], EmoryNLP [29]. These benchmark conversational
emotion datasets are mainly used for multimodal tasks. And none of
them can be applied to emotion reasoning because of the lack of the
necessary annotations for the detailed information required for reason-
ing tasks. None of them contain aspect-level and topic-level emotional
annotations.

In recent years, the mainstream approaches for conversational emo-
tion recognition are based on temporal networks and graphical con-
volutional network models. Due to the context propagation problem
of conversations in recurrent neural networks, Deepanway Ghosal pro-
posed DialogueGCN [30] by adding a graph structure to convolutional
neural networks. However, the graph neural network represented by
DialogueGCN collects information within a specific window, which
ignores sequence information in a large span. In contrast, DAG [15]
solves this problem by treating the utterances in a conversation as a
directed acyclic graph. I-GCN [31] utilizes incremental graph structure
to imitate the dynamical conversation. SKIER [32] construct a neu-
rosymbolic framework with fusing symbolic dependency knowledge,
concept-level commonsense, and sentiment knowledge.

In addition to the traditional construction of neural networks, a
commonsense knowledge graph can also mine emotional commonsense
in a conversation [33,34]. Nie [35] embeds commonsense and po-
tential topic information into long dialogue emotion detection. Using
contextual information, the influence of the speaker’s state can be
considered.
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Fig. 2. The overall architecture of the self-supervised model where 𝑢𝑖,𝑗 and 𝑢𝑖,𝑗+1 two adjacent utterances from the same conversation 𝑖, where 𝑖 ∈ [1, 𝑘], 𝑗 ∈ [1, 𝑛]. This model
redicts whether two adjacent utterances are orderly or unorderly.
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CMN [36], and ICON [9] model different speakers separately through
RU and obtain the interaction information between different speakers.
esides, multi-task [37–39] methods, and fuzzy networks [40] are also
ery effective for some multimodal emotion recognition studies. Self-
upervised learning can obtain information on unlabeled data through
retext tasks. Self-supervised learning is now heavily explored in many
ields of research using deep learning networks. In computer vision,
ervasive images and visual features are learned from unlabeled data
hrough various self-supervised tasks. For example, Gidaris et al. [41]
ropose to predict the rotated picture’s rotation angle; to accomplish
his, the model should learn some intrinsic knowledge about the
icture. Image coloring of old photographs [42] also allowed the
etwork to learn information about the picture, such as relevant color
nowledge. Ishan et al. [43] can learn a visual feature by determining
hether a video sequence is correct temporal order. To obtain the

epresentation of temporal commonsense, Rowan et al. [44] construct a
odel to learn multimodal knowledge by watching a video with speech.

Self-supervised learning is also primarily used for emotion clas-
ification. Yu et al. [45] improved the emotion classification result
y generating unimodal data labels from multimodal data through a
elf-supervised learning strategy. As for natural language processing,
redicting central words or adjacent sequences can be used as a self-
upervised task for learning word embeddings; predicting the masking
ords given a sequence of words can be used as an auxiliary task

or language modeling. Devlin [46] proposed the masked language
nd next sentence prediction task to learn sentence embeddings. In
uilding dialogue systems, Wu [47] proposed the task of utterance
rder consistency detection, which is acted as a supervised signal for
ialogue generation. In BART [48], several self-supervised tasks such as
entence permutation and document rotation. In contrast, we consider
hether the two consecutive utterances of the dialogue are ordered and
ropose a self-supervised task of utterance order prediction.

. Method

In this section, we give a detailed description of the self-supervised
tterance order prediction approach. This paper aims to predict the
rder of adjacent utterances so that we can pay more attention to
odeling inter-utterance consistency without considering the topic

nd speaker information. Meanwhile, we have implemented several
3

xperiments for the downstream ERC tasks.
.1. Self-supervise utterance order predict model

For our inter-sentence order prediction, which are two examples
f positive and negative instance:

(

𝑢𝑖,𝑗 , 𝑢𝑖,𝑗+1
)

is the positive instance,
nd

(

𝑢𝑖,𝑗+1, 𝑢𝑖,𝑗
)

is the negative instance where 𝑢𝑖,𝑗 and 𝑢𝑖,𝑗+1 are two
djacent utterances from the same conversation 𝑖, and 𝑖 ∈ [1, 𝑘], 𝑗 ∈

[1, 𝑛]. The pre-trained model can further improve the performance of
ownstream sentiment analysis tasks.

The ERC task aims to recognize the hidden emotion of every utter-
nce in a conversation, which requires utilizing contextual information
nd the speaker’s information to enhance the model’s performance in
he conversation. Therefore, the pre-trained model obtained by the
tterance order prediction approach can utilize the utterance context
nformation to gain more information at the utterance level. When the
odel simultaneously utilizes the feature extracted from the pre-trained
odel and 𝑓𝑡𝑒𝑥𝑡, the model can focus on more details in the sentence.

Firstly, the pretext is defined as follows: given a set with 𝑁 utter-
ance pairs

{(

𝑢1,1, 𝑢1,2
)

,… ,
(

𝑢𝑘,𝑛−1, 𝑢𝑘,𝑛
)

,
(

𝑢1,2, 𝑢1,1
)

,⋯ ,
(

𝑢𝑘,𝑛−1, 𝑢𝑘,𝑛
)}

,
the goal is to predict each utterance pair as positive or negative. The
architecture of our pre-trained model is revealed in Fig. 2. The model
is composed of three section: an encoder layer, a feature extract layer,
and a prediction layer. The encoder layer transforms the utterances into
a representation, while the feature extract layer further combines the
utterance representation information and finally predicts the order of
utterances through the predicted layer. The specific process is exhibited
in Fig. 2.

The bert-large model is used as the encoder layer. Specifically,
insert the tokens 𝐶𝐿𝑆, 𝑆𝐸𝑃 , 𝐸𝑂𝑆 into the utterance pair

(

𝑢𝑖,𝑗 , 𝑢𝑖,𝑗+1
)

to transform the utterance sequence into
{

𝐶𝐿𝑆, 𝑢𝑖,𝑗 , 𝑆𝐸𝑃 , 𝑢𝑖,𝑗+1, 𝐸𝑂𝑆
}

,
then, this sequence is then fed into the bert-large model and the output
vector is the representation of the utterance pair and used in the next
layer of the network, where the dimensionality of this vector is 1024. In
the feature extract layer, we obtain the semantic information of utter-
ance with a transformer. Transformer captures prior knowledge about
utterance word order through discourse modeling, which allows the
pre-trained model to learn more fine-grained utterance-level semantic
information.

The representation of utterance obtained from the encoder layer is
the input for the transformer. In the encoder layer of the transformer,
we also add the positional encoding embedding to model the relative
position of the utterance in the conversations. We use eight transform-
ers encoder layers. The number of attention heads is 2, the dimension
of the hidden layer is 2048, and the dropout rate is 0.2. We only use
the encoder of the transformer because, in the emotion analysis task,

the transformer is often employed for encoding utterances.
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Fig. 3. ERC model architecture with the self-supervised task, where the utterance’s emotion is the final output. The pre-trained model is used after completing the proposed
self-supervised training. The representation of the utterance obtained from the last layer of the transformer fused with the multimodal features and fed into the downstream
emotion recognition model. G/R denotes text features extracted using GloVe and RoBERTa pre-trained models.
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The final representation of the utterance pair is obtained after the
feature extract layer. And this representation is fed into the prediction
layer with the MLP layer to produce the probability of whether the
utterance pair is ordered or not:

𝑝𝑟𝑢𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑙𝑖𝑛𝑒𝑎𝑟
(

𝑟𝑢𝑖,𝑗
))

(1)

here the 𝑟𝑢𝑖,𝑗 denotes the representation of
(

𝑢𝑖,𝑗 , 𝑢𝑖,𝑗+1
)

extracted by the
ransformer. The 𝑝𝑟𝑢𝑖,𝑗 is the probability of classification, 𝑝𝑟𝑢𝑖,𝑗 ∈ [0, 1].

In this section, the self-supervised model is trained on the IEMOCAP
nd MELD datasets for emotion recognition.

.2. ERC framework

In this section, we will specify how to apply our pre-trained model
o downstream emotion recognition tasks. To demonstrate the effec-
iveness of the self-supervised utterance order prediction approach,
e combine it with multiple emotion recognition models rather than
ith a particular model. Fig. 3 shows the combination of our proposed
pproach with the downstream emotion recognition task.

Firstly, we extract the three modal feature. Textual Features Ex-
raction: GloVe [49], and RoBERTa [50] are used to extract text
eatures. For RoBERTa, the output of the last layer is treated as the text
eature. Visual Features Extraction: To get visual features,we use 3D-
NN to model spatiotemporal features of each utterance video. 3D-CNN
elps to understand emotional concepts such as smiling or frowning,
ften spread across multiple video frames with no predefined spatial
ocation. The model contains three blocks, each with two convolutional
ayers followed by max-pooling. We capture the visual features for each
tterance with dimension. The is used as the representation of video
eatures. Audio Features Extraction: We first formatted the audio of
ach voice video as a 16-bit PCM WAV file and used the open-source
oftware openSMILE. Specifically, we use the IS13 ComParE1extractor
hich provides 6373 features for each utterance. Then the features
re normalized, followed by L2-based feature selection, regarded as a
resentation with dimension.

For multimodal data, the representation extracted from the pre-
rained module is fused with the original multimodal representation
o obtain the new feature representation for the downstream emotion
ecognition model.

= 𝑐𝑜𝑛𝑐𝑎𝑡𝑎𝑛𝑒𝑡𝑒
(

𝑓𝑡, 𝑓𝑡𝑒𝑥𝑡, 𝑓𝑣𝑖𝑑𝑒𝑜, 𝑓𝑎𝑢𝑑𝑖𝑜
)

(2)

= 𝐸𝑅𝐶𝑚𝑜𝑑𝑒𝑙 𝑢 (3)
4

𝑒𝑚𝑜 ( )
here the 𝑓𝑡 is the textual feature extracted by the pre-trained model.
he 𝐸𝑅𝐶𝑚𝑜𝑑𝑒𝑙 denotes the downstream ERC model. The representation
f utterance 𝑢 is the input of the ERC model with removing the
lassification layer. The representation 𝑓𝑒𝑚𝑜 is obtained through the
RC model that can be used for classification. To further improve the
lassification result of the final representation of the utterance, the
eatures 𝑓𝑒𝑚𝑜 and 𝑓𝑡 extracted by the pre-trained model are further fused
s the final representation of the utterance:

𝑜 = 𝑟1 ∗ 𝑓𝑡 + 𝑟2 ∗ 𝑓𝑒𝑚𝑜 (4)

where 𝑟1 and 𝑟2 are the trainable parameters. 𝑢𝑜 is the final utterance
representation. Finally, the 𝑢𝑜 is fed into the classification layer for
emotion category prediction, and the probabilities of all candidate
emotion labels are calculated:

�̂� = 𝑠𝑜𝑓𝑟𝑚𝑎𝑥
(

𝑊 𝑢𝑜 + 𝑏
)

(5)

where the 𝑊 and 𝑏 are trainable parameters. The model is trained by
optimally minimizing the cross entropy loss of the ERC, for the single
session, our objective function is:

𝑙𝑜𝑠𝑠 = − 1
𝑁

𝑁
∑

𝑖=1
𝑦𝑖 log

(

�̂�𝑖
)

(6)

where 𝑖 denotes the 𝑖th utterance, 𝑁 is the number of utterances in
this conversation, and 𝑦𝑖 and �̂�𝑖 denote the expected emotion label and
the predicted probability distribution for the emotion class of the 𝑖th
utterance.

4. Experiment

4.1. Datasets

Our experiments perform emotion recognition experiments on the
following two datasets.

IEMOCAP [16]: The IEMOCAP dataset consists of text, audio, and
video. It contains two types of scenes, improvised and scripted scenes,
and is divided into five sessions. All the corpus in the dataset has six
emotions: anger, happiness, sadness, neutral, excitement, and frustra-
tion.

MELD [17]: MELD is a multimodal dataset. A total of 7 emotions
and 3 sentiments are included. The labels we use in this paper are emo-
tion labels. The emotion labels are anger, disgust, neutral, happiness,
sadness, surprise, and fear.

The distribution of the number of training sets and test sets for two

of these datasets is shown in Table 1.
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Table 1
The dataset distribution.

Datasets Conversations Utterances

Train Val Test Train Val Test

IEMOCAP 120 12 31 5810 1623
MELD 1039 114 280 9989 1109 5610

Datasets Classes Evaluation

IEMOCAP 6 Accuracy and Weighted F1
MELD 7 Accuracy and Weighted F1

4.2. Baselines and evaluations

• DialogueRNN [10]: It dynamically analyzes the state of each
speaker during a conversation and models the context of each
person’s discourse for emotion analysis.

• BiERU [13]: A framework for conversational emotion analysis
called bidirectional sentiment recursive unit is proposed.

• HiTrans [14]: A transformer-based network for modeling the
context and speaker sensitivity. BERT is utilized as a low-level
transformer to generate local corpus representations.

• DialogueCRN [8]: It is designed to iteratively execute multiple
rounds of reasoning modules to extract affective cues. And the
conversational context is fully understood in terms of human
emotion.

• DAG-ERC [15]: A directed acyclic neural network is designed for
the downstream emotion recognition task in conversation.

For the IEMOCAP and MELD datasets, like most current research
orks, we leverage average accuracy (ACC) and weighted F1 (F1) to
valuate our experimental results.

.3. Result analysis

Table 2 unveils the experimental results that each model uses the
ultimodal feature where the textual feature is extracted by GloVe

r RoBERTa respectively. Among them, the self represents the self-
upervised utterance order prediction approach.
IEMOCAP: In Table 2, when using GloVe extracts the textual fea-

ture, the best results come from the self+BiERU model with ACC of
65.62% and F1 score of 64.56%. Meanwhile, we also use RoBERTa
to re-extract the text features. The experimental results show that
using the features extracted by RoBERTa brings about a consider-
able improvement. The results in Table 2 indicate that the best re-
sult comes from self+DAG-ERC with ACC of 69.01% and F1 score of
69.01%, which are state-of-the-art performance. The average conversa-
tion length is 50 on the IEMOCAP dataset. When the conversation is
longer, more information can be obtained by predicting the utterance
order task.

MELD: As shown in Table 2, the best result comes from the self
+ DialogueCRN model with ACC of 66.82% and F1 of 65.72%, while
utilizing RoBERTa extracts the textual features. Compared to the Dia-
logueCRN model, it improved by 1.25% on F1. Many conversations on
the MELD dataset have more than 5 participants, making the speaker’s
information more variable. Due to this reason, approaches to self-
supervised utterance prediction perform less well on the MELD dataset
than on the IEMOCAP dataset.

Additionally, When we used RoBERTA instead of the BERT module
in the pre-training stage as the feature extraction module, the results
5

are shown in Table 3, which is similar to the results in Table 3.
4.4. Ablation study

To better understand the role of utterance order, we conduct several
ablation studies on IEMOCAP and MELD datasets when the textual fea-
ture is extracted by RoBERTa. When the Transformer inserted into the
model is not loaded with pre-trained weights, there is no information
related to utterance order in the utterance representations extracted by
the Transformer. Take BiERU as an example, the results are shown in
Table 4. When combining Transformer, which does not perform pre-
training tasks, with BiERU, the results are not significantly different
from those of the original BiERU on the IEMOCAP and MELD datasets.
This indicates that the transformer encoder, without being pre-trained,
does not affect the downstream sentiment analysis model. Furthermore,
when combining the pre-trained Transformer with BiERU, ACC and F1
improved by 0.86% and 1.55% on the IEMOCAP dataset, respectively.
On the MELD dataset, ACC and F1 improved by 0.46% and 0.59%.
These results illustrate the effectiveness of self-supervised utterance
order prediction. These results suggest that the pre-trained model con-
tains prior knowledge regarding utterance meanings influenced by
shifts in discourse order, which empowers the emotion recognition
model to pay more attention to the potential semantic information of
the sentence when capturing context. In the presence of an emotion
shift in neighboring utterances, it is crucial to focus on the subtle
changes in utterance semantics.

4.5. Significance test

The significance test results of each model and each dataset are
displayed in Table 4 (t-test). The results demonstrate a significant dif-
ference between our method and the comparison models (see Table 5).

4.6. Case study

A conversation sampled from the IEMOCAP dataset is shown in
Fig. 4. Fig. 4 consists of two parts: The left part contains two utterances
that are ordered and disordered. The right part is a hot map of the
utterance two attention score. The aim is to predict the emotion label
of the utterance 2 spoken by speaker B. Due to the lack of the ability
to understand the change of intrinsic meaning caused by different
utterance orders, some comparative models can easily to mistakenly
identify the emotional label as frustrated or neutral. Fig. 4 shows that
when the model does not use the features extracted by the self-supervise
module, the model focuses on the words ‘‘problem’’ and ‘‘going’’ for
utterance 2, which makes the model insufficient to capture the detailed
information of the sentence.

When the order of utterances 1–2 changes, the intrinsic meaning
will change. Fig. 4 shows that the model has higher attention scores for
the words ‘‘problem’’, ‘‘satellites’’, and ‘‘down’’ in utterance 2. The ERC
models can get more Fine-grained information-related emotion when
the multimodal features are fused with the feature extracted from our
proposed self-supervised model. Speaker A’s emotion is identified as the
angry label.

4.7. Error analysis

By ranking the weighted F1 score of each emotional category on
MELD, and observing the proportion of the emotional sample with
the lowest F1 in the dataset. We found that the F1 of fear is 0.2521,
accounting for 0.9% of the samples, which shows that our approach
has a low recognition ability for small sample emotions. In addition,
misclassifications often occur on similar emotions, such as happy and
excited or frustrated and angry. For example, on the IEMOCAP dataset,
excited utterances are incorrectly predicted as Happy in 55.08% of the
samples with incorrect predictions, while Happy utterances are incor-
rectly predicted as excited in 60% of the samples that were incorrectly

predicted.
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Table 2
Comparative performance of models with the textual feature extracted by GloVe(G) and RoBERTa(R). The ACC, F1 is average
accuracy and weighted F1, respectively.
Model IEMOCAP𝐺 IEMOCAP𝑅 MELD𝐺 MELD𝑅

ACC F1 ACC F1 ACC F1 ACC F1

DialogueRNN 63.40 62.75 64.20 64.21 59.66 57.35 65.90 63.90
self+DialogueRNN 64.33 63.98 65.37 65.38 61.07 58.51 66.25 64.51
BiERU 65.25 64.20 64.70 64.46 58.85 55.21 64.37 63.31
self+BiERU 65.62 64.56 65.68 65.74 59.73 56.14 66.36 64.64
HiTrans - - 64.03 64.07 - - 62.26 61.89
self+Hitrans - - 64.96 64.79 - - 64.75 63.89
DialogueCRN 63.83 63.74 66.17 66.21 59.92 57.76 65.44 64.47
self+DialogueCRN 64.02 64.05 67.90 68.09 61.23 57.90 66.82 65.72
DAG-ERC - - 68.00 67.83 - - 63.87 63.48
self+DAG-ERC - - 69.01 69.01 - - 63.98 63.57
Fig. 4. A conversation passage from IEMOCAP dataset for case study.
Table 3
The self-supervised task and ERC task adopts the RoBERTa as backbone.
Model IEMOCAP𝑅 MELD𝑅

ACC F1 ACC F1

self+DialogueRNN 65.13 65.42 66.78 64.73
self+BiERU 65.13 64.95 64.82 65.10
self+Hitrans 65.25 65.56 64.21 64.26
self+DialogueCRN 68.21 68.18 66.97 65.70
self+DAG-ERC 68.70 68.76 63.75 63.47

Table 4
Experimental results of ablation studies on IEMOCAP and MELD datasets.
Model IEMOCAP MELD

ACC F1 ACC F1

BiERU 64.70 64.46 64.37 63.31
Self+BiERU W/O Pre-train 64.82 64.19 65.90 64.05
Self+BiERU W/ Pre-train 65.68 65.74 66.36 64.64

Table 5
The significance test result (p-Value).

DialogueRNN BiERU HiTrans

IEMOCAP 4.10e−04 3.67e−06 2.63e−04
MELD 7.29e−04 2.49e−05 8.10e−04

DialogueCRN DAG-ERC

IEMOCAP 1.19e−04 4.97e−03
MELD 2.36e−05 8.94e−03
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Similarly, the neutral utterances are predicted as frustrated in 50%
of the incorrectly predicted samples, and frustrated utterances are
predicted as neutral in 42.61% of the incorrectly predicted samples.
And there is a similar situation in the MELD dataset. This may be
the utterances with similar emotion labels having similar semantic
information.

5. Conclusion

In this paper, an approach that uses a self-supervised pretext task
for conversational emotion recognition is proposed. We present the self-
supervised task for predicting utterance order and its implementation
in detail. In dialogue emotion recognition, the change of utterance
order will lead to dramatic differences in meaning, which lead to the
change of utterance of emotion. For example, in Fig. 1, we notice
that the change in utterance order is vital for recognizing emotions.
So, the pretext task of utterance order prediction is utilized to obtain
utterance consistency. The experiments are performed on two available
ERC datasets and the results indicate the proposed approach improves
recognition performance compared with those baselines. With com-
prehensive evaluation and ablation analysis, we have confirmed that
fusing the information obtained from our module with the utterance
is conducive to enriching the representation of emotional features.
Besides, this paper serves as the foundation for our future research,
which will build upon the characteristics of conversation. Specifically,
we plan to conduct additional pre-training work using emotional word
masks and speaker sentence judgments, and combine them together.
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