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Motivation 

•  User reviews are rapidly growing in 
quantity and popularity. 

•  Typically: 
– Users write reviews and assign 

overall ratings. 
– Products are ranked based on their 

average overall rating. 
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Motivation 

•  Overall ratings can be too coarse. 
•  Restaurant 1: 
– OK service 
– OK food 
– Avg. overall 

rating: 3/5 

•  Restaurant 2: 
– Slow service 
– Great food 
– Avg. overall 

rating: 3/5 
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Motivation 

•  Users have different priorities. 
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1.  Ambiance 
2.  Service 
3.  Food 
4.  Price 
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3.  Service 
4.  Ambiance 
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Motivation 

•  MULTI-ASPECT SENTIMENT ANALYSIS: 
Takes into account multiple, 
potentially related aspects often 
discussed within a single review. 
– e.g., food, service and ambiance for 

a restaurant review. 
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Motivation 

“The food was very good, but it took 
over half an hour to be seated, ... and 
the service was terrible. The room 
was very noisy and cold wind blew in 
from a curtain next to our table. 
Desserts were very good, but because 
of [the] poor service, I’m not sure 
we’ll ever go back!” 
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Outline 

•  Motivation 
•  Approach / Models 
•  Sentence Labeling 
•  Rating Prediction 
•  Conclusion 
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Approach / Models 

•  Topic modeling: 
– Based on Latent Dirichlet Allocation 

(Blei et al., 2003). 
– Uncovers latent ‘topics’ in a 

document collection. 
– Topics are (kind of) like aspects. 
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Approach / Models 

•  Topic modeling: 
– Popular choice for multi-aspect 

sentiment analysis tasks. 
– Many models have been proposed. 
– We consider 4. 
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Approach / Models 

•  Original LDA (Blei et al., 2003): 
– An aspect is a distribution over 

words. 
– Each review is generated from a 

distribution over aspects. 
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Approach / Models 

•  Local LDA (Brody and Elhadad, 
2010): 
– An aspect is a distribution over 

words. 
– Each sentence is generated from a 

distribution over aspects. 
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Approach / Models 

•  Segmented Topic Model (Du et al., 
2010): 
– Each review is generated from a 

distribution over aspects. 
– Each sentence is generated from a 

distribution over aspects. 
– Pitman-Yor Process. 
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Approach / Models 

•  Multi-grain LDA (Titov and 
McDonald, 2008): 
– Each sentence is generated from a 

distribution over global topics and 
local aspects: 
• e.g., 10% Vancouver (global topic), 
30% food, service and ambiance 
(local aspects). 
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Sentence Labeling 

•  Multi-aspect sentence labeling: 
– Identify and extract relevant aspects 

for a rated entity. 
– Useful for creating aspect-specific 

comparative summaries. 
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Sentence Labeling 

•  Multi-aspect sentence labeling: 
– Label sentences according to topic 

distributions. 
– Need to map topics to aspects: 
• Not trivial. 
• Inform the prior with seed words. 
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Sentence Labeling 

•  Seed words: 
– Food: food, chicken, beef, steak. 
– Service: service, staff, waiter, 

reservation. 
– Ambiance: ambiance, atmosphere, 

room, experience. 
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Sentence Labeling 

•  Dataset: 
– 1,490 manually labeled sentences, 

from 652 restaurant reviews on 
CitySearch.com (Ganu et al., 2009). 
– Aspects: food, service, ambiance. 
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Sentence Labeling 
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Rating Prediction 

•  Multi-aspect rating prediction: 
– Assign ratings (e.g., 1-5 ‘stars’) to 

each aspect of each review. 
– Useful for aspect-specific ranking. 
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Rating Prediction 

•  Multi-aspect rating prediction: 
– Indirect supervision: 
• No gold-standard aspect ratings. 
• Assume overall ratings given. 
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Rating Prediction 

•  Multi-aspect rating prediction: 
– Indirect supervision: 
• Train supervised SVM to predict 
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Rating Prediction 

•  Dataset: 
– 66,512 reviews from TripAdvisor 

with overall, and 7 aspect ratings. 
– Not every review discusses every 

aspect: 
• Group reviews by hotel. 
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Rating Prediction 

•  Metrics: 
– ρaspect: For a given hotel, how good is 

the relative ranking of aspects? 
– ρhotel: For a given aspect, how good 

is the relative ranking of hotels? 
– Mean Average Precision @ K: How 

well do we keep the top K hotels in 
the top K spots? 
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Rating Prediction 
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Rating Prediction 

•  Multi-aspect rating prediction: 
– Direct supervision: 
• Assume aspect ratings given in 
training. 
• Train supervised learner, adding 
features derived from the topic 
model output. 
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Rating Prediction 

•  Multi-aspect rating prediction: 
– Direct supervision: 
• Perceptron Rank (PRank): Online 
ordinal regression learner, 
popular in related work. 
• Support Vector Regression (SVR): 
Not used in previous work. 
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Conclusion 

•  Seed words can be incorporated into 
topic models to accurately label 
sentences according to aspect. 

•  Topic models can help predict aspect-
ratings given only overall ratings. 

•  Features derived from topic models 
contribute little to a fully supervised 
support-vector regression learner. 
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Thank you. Questions? 

•  Seed words can be incorporated into 
topic models to accurately label 
sentences according to aspect. 

•  Topic models can help predict aspect-
ratings given only overall ratings. 

•  Features derived from topic models 
contribute little to a fully supervised 
support-vector regression learner. 

Mul$-‐aspect	  Sen$ment	  Analysis	  with	  Topic	  Models	  


