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OBJECTIVE: HOW TO IMPROVE 

RECOMMENDATIONS WITH USER 

COMMENTS AND REVIEWS? 
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Rating: 
Review: Love it or hate it! 
... 

Rating: 
Review: This is a miserable film. 
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PROPOSED SOLUTION 

Unrated 

Reviews

Sentiment analysis

  1. Corpus representation

  2. Orientation and intensity of words

  3. Review classification

Ratings

User-movie 

recommendations

Semantic

Orientation

SentiWordNet

Rated Reviews

Sentiment-based recommendation

  1. User/movie biases

  2. Matrix factorization

  3. Recommendations inference
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SENTIMENT ANALYSIS 

CHALLENGES 

• Opinions are written in natural language which 
implies :  
- subjectivity; - sarcasm; - irony; - idiomatic expressions; 

misspelling; etc. 

 

• The same opinion word may be used in a positive 
or negative context 

 

• Negative, Conditional and Comparative 
expressions  
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• Semantic Orientation1: 

 

 

 

• How positive or negative is an opinion 
word?  

– SentiWordNet2 
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 OPINION WORD ORIENTATION AND INTENSITY 
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(1) TURNEY, P. 2002, THUMBS UP OR THUMBS DOWN? SEMANTIC ORIENTATION APPLIED TO UNSUPERVISED 

CLASSIFICATION OF REVIEWS 

(2) ESULI, A. AND SEBASTIANI, F., 2006, SENTIWORDNET: A PUBLICY AVAILABLE LEXICAL RESOURCE FOR OPINION 

MINING 



Example 

“Love it or hate it.” 

“However, can someone tell me what on earth the last page...” 

word family SO (Google) + SentiWordNet  - SentiWordNet 

love n -0.0824 1.375 0.0 

it nointerest na na na 

or nointerest na na na 

hate v -0.8399 0.0 0.75 

it nointerest na na na 

however r  -0.34153 0.5 0.5 

someone N -0.65935 0.0 0.0 

tell V -0.3956 0.875 0.625 

me nointerest na na na 

what nointerest na na na 

on nointerest na na na 

earth n -0.4041 0.0 0.625 
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MULTIPLE BERNOULLI CLASSIFICATION 
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RATING RANGE 

IMDB DATASET IS 1 TO 10 

A CLASSIFIER IS LEARNED 

FOR EVERY RATING VALUE 

THUS, FOR EACH RATING 

VALUE THERE IS A 

PREDICTION FOR EACH 

REVIEW 

THE PREDICTION IS 

NORMALIZED ACCORDINGLY 

TO THE PREDICTIONS OF ALL 

RATINGS 
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DATASET 

REVIEWS FROM IMDB 

A TOTAL OF 1,729,293 REVIEWS WERE COLLECTED 

Split #Reviews Description 

A 335,975 Only to train SA  

B 335,975 Test SA/Train RS 

C 417,147 Train RS (no explicit ratings) 

D 335,976 Train RS 

E 201,586 Test RS 

F 102,634 Validate RS 
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PERFORMANCE - SENTIMENT ANALYSIS 

F-score on the IMDb corpus 
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PERFORMANCE - SENTIMENT ANALYSIS 
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RATING MATRIX 

HIGHLY INCOMPLETE SINCE MOST ELEMENTS ARE EMPTY 
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PREDICT AN UNKNOWN RATING: 

USERS AND PRODUCTS REPRESENTED IN THE SAME 
LATENT FACTOR SPACE 

ˆ .ui u ir p q

WITH A SVD DECOMPOSITION THE RATING MATRIX  

MATRIX FACTORIZATION 
ENABLES THE ASSESSMENT 

OF USERS PREFERENCES 
REGARDING THE PRODUCTS 

BY CALCULATING THEIR 
FACTOR REPRESENTATIONS 

11 



RATINGS MATRIX Rra  

FACTORIZATION WITH BIASES 

2 2 2 2 2

,
ˆ[ , ] argmin ( ) (|| || || || )

u i ui ra

ui ui u i u i
p q r R

P Q r r p q b b

GOAL: MINIMIZE THE 
PREDICTION ERROR 
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RATINGS MATRIX Rra  

FACTORIZATION WITH BIASES 
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u i ui ra ui rev

ui ui ui ui u i u i
p q r R r R

P Q r r c r p q b b

RATINGS INFERRED FROM THE SENTIMENT ANALYSIS 

FRAMEWORK ARE GIVEN TO THE RS 

THE REVIEWS ACTUAL RATING ARE KNOWN 
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R R,ra revR
ENRICH THE MATRIX R WITH RATINGS 

INFERRED FROM REVIEWS WITH  KNOWN AND 
UNKNOWN EXPLICIT RATINGS  

RREV 

RATINGS MATRIX Rra  

FACTORIZATION WITH SENTIMENT-BASED 

REGULARIZATION 

The confidence level is given by de 
Sentiment Analysis framework 
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RECOMMENDATIONS: IMDB DATASET 
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Reviews with 
Unknown ratings 
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SUMMARY 

• Achievements: 

– Extraction and sentiment analysis of users reviews 

– Introduced sentiment-based ratings in a 
recommendation algorithm 

 

• Next step:  

– alternatives to SentiWordNet 

– semantic orientation metric 

– improve algorithm with opinion targets information 
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Thank you for your attention 

Questions? 
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