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How Much Supervision? Corpus-Based Lexeme Sentiment Estimation

Aleksander Wawer

Abstract—This paper is focused on comparing corpus-based
methods for estimating word sentiment. Evaluated algorithms
represent varying degrees of supervision and range from
regression alike approaches to more heavily supervised classi-
fications. The main idea is to explore the opportunities arising
from mining medium sized, balanced corpora — as opposed
to web as a corpus paradigm. The comparisons have been
carried using sentiment estimator benchmarks designed to take
into account classification and regression problems as well as
varying granularity of predicted sentiment scores: from simple
to complex scales. Overall, the results turn out to be very
promising and indicate superiority of supervised algorithms, es-
pecially for lower sentiment granularity predictions. However,
unsupervised methods can be still considered as an interesting
alternative in the case of the most fine-grained, regression
like scenarios of sentiment estimation. In these cases heavy
supervision and large number of features are less attractive
than simple unsupervised methods.

Keywords-lexeme sentiment estimation, optimization, super-
vised, unsupervised

I. INTRODUCTION

This paper is focused on comparing two key approaches
to lexeme sentiment estimation from corpus data. Contrary
to some previous works discussed below, we assume that
it is no longer feasible to use web as a corpus paradigm
and therefore our efforts are aimed at maximizing the
opportunities related to medium sized corpora, available for
local processing on typical server class machines.

The first, well-known method of word sentiment estima-
tion is an unsupervised one. It requires only two small sets of
paradigm words, representative of each polar class (positive
and negative). Our contributions, described below in section
IV consist of an algorithm of systematic optimization of both
sets and extending the formula to a linear regression.

The second approach, discussed in section V is a super-
vised one. It bases on the idea of training machine learning
classifiers on vectors generated from word contexts. Specif-
ically, we explore discriminative capabilities of classifiers
trained on information obtained from two context (window)
sizes, samples of contexts of various lengths and investigate
the impact of morphosyntactic data. We employed three
machine learning algorithms.

Our goal is to compute universal (as opposed to domain
dependent) word sentiment scores using multi-point senti-
ment scales. We begin from the simplest binary task of
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distinguishing sentiment bearing words from neutral ones.
Then we proceed by extending the problem to three classes:
recognizing negative, neutral and positive words. We further
extend the scale into a more fine-grained scenario of five
classes. This is done by isolating highly polar words (highly
positive and negative) into two separate classes. Finally,
we extend the scale to nine points by taking into account
disagreements between human raters and marking those as
intermediate values.

Although the results reported below are mostly universal
and applicable to other languages, our work deals with the
Polish language. We test both methods on a Polish corpus
and use a sentiment lexicon of Polish words, as discussed
subsequently.

The paper is organized as follows. We begin with dis-
cussing major existing contributions in section II. In Section
IIT we briefly describe two resources used in subsequently
presented experiments: the National Corpus of Polish and
the manually scored sentiment lexicon, used as the Golden
Standard. Section IV introduces unsupervised methods of
lexeme sentiment estimation and proposes improvements
over existing approaches. Section V describes experiments
using machine learning from word contexts. Finally, section
VI presents the details of comparisons between both types
of methods. We summarize the paper in section VIL

II. EXISTING WORK

Existing methods of word sentiment estimation fall into
two broad groups.

The first one is focused on WordNet and typically does
not involve corpora. For instance, [1] propose and evaluate
a method of determining word sentiment using WordNet
based expansion of a seed set of words; it assumes that syn-
onyms of positive words are mostly positive and antonyms
mostly negative. To overcome arising problems the authors
allow both positive and negative sentiment associations for
each word. This enables some words to be simultaneously
positive and negative. The results of evaluation against
human scoring indicate comparable levels of agreement
between human raters as human-machine. WordNet based
expansion of sentiment labels has also been the subject of
supervised classification using glosses and graph walks [2].
The resulting resource, SentiWordNet, follows the idea of
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simultaneous positive and negative associations of a synset
but extends it with subjectivity information. Current state of
the art resources of this type include [3].

The second group of works deals with estimating word
sentiment using corpus statistics. The methods allow to
compute not only word sentiment polarity, but also intensity
[4], [5], [6]. Originally the approach has been proposed and
evaluated in web as a corpus paradigm, using web search
engines and number of results returned by appropriately
crafted queries. Our work belongs to this group.

III. RESOURCES

This section discusses two major resources that underlie
the experiments described in this paper.

A. Golden Standard Lexicon

In order to measure performance of word sentiment es-
timation methods and train supervised models, one needs
a lexicon scored by human evaluators. We use the list of
1208 Polish lexemes described by [7], developed originally
to match computed ranges of continuous sentiment values
to discrete scores usable by humans.

The words have been acquired using a set of manually
defined lexical patterns, submitted to a search engine to
find candidates for lexemes with high sentiment loading.
Then, the downloaded corpus has been processed to find
pattern continuations — lexemes following pattern matches,
which are assumed to be candidates for sentiment words.
The lexicon has been scored by two humans using a five
point scale. To reflect discrepancies between scorings, the 5-
point scale has been extended to 9 points. The scale ranges
from -2.0 to +2.0 with the step value of 0.5.

In addition to the 9-point scale, in subsequent sections we
recompute the scorings into following:

o 2-class: Neutral words, marked as such by both anno-
tators (0), are distinguished from all other words.

o 3-class: Words are either negative (-2.0 to -0.5), neutral
(0) or positive (0.5 to 2.0).

¢ 5S-class: Words are classified as very negative (-2.0 and
-1.5), negative (-1.0 and -0.5), neutral (0), positive (0.5
and 1.0) and very positive (1.5 to 2.0).

B. Corpus

Our study has been conducted on the National Corpus
of Polish (NKJP), the biggest and most advanced! resource
of this type available in Polish. In particular, we conducted
all the experiments on the balanced 300 million words sub-
corpus using the Poliqarp query engine?.

The experiments on unsupervised sentiment estimation
described subsequently in section IV rely on computing
word co-occurrence frequencies. Early works such as for

'Multiple types and levels of annotations, two search tools and query
formats, deliberate selection of texts.
Zhttp://poligarp.sourceforge.net/
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example in [5], used web as a corpus approach and the
NEAR operator, originally provided by the Altavista search
engine. The operator, placed between two keywords, re-
turned documents where the keywords appeared within a
set number of words of each other, in either order.

This does not seem feasible any more. There is no more
support for NEAR and no equivalent operators in any major
search engine. The possibility that still remains is to measure
occurrences on web page level (equivalent to using an AND
operator) — however, even in this case relying on search
engine scores might not be a good idea. An exhaustive list
of possible issues has been discussed by [8].

Hopefully, the Poligarp query engine allows to substitute
the NEAR operator with two queries. For example, to obtain
corpus occurrences of keyword A (base form of the lexeme)
within three tokens from keyword B (also base form), either
order, one has to issue two following queries:

[base=A][]?[]1?[]?[base=B]
[base=B][]1?[]?[]1?[base=A]

IV. UNSUPERVISED WORD SENTIMENT ESTIMATION

This section discusses the unsupervised technique and
introduces two extensions.

A. Problem Formulation

The unsupervised method employed in this paper extends
the well-known approach formulated by Turney [4], where
the strength of association between a word and each of the
two polar classes (positive and negative, for instance) is
calculated using the Semantic Orientation Pointwise Mutual
Information (SO-PMI).

To begin with one needs to define the Pointwise Mutual
Information (PMI) between two words, wl and w2, as:

p(wl&w2)

p(wl) p(w2) )

where p(wl&w?2) is the probability of co-occurrence of
(wl) and (w2), while p(wl) and p(w2) denote probabilities
of occurrences of wl and w2, respectively.

For estimating affective (sentiment) polarity and intensity
of a word ¢, PMI is computed against two sets of paradigm
positive and negative words, denoted as PW and NW. The
formula is called the semantic orientation PMI (SO-PMI)
calculated as:

PMI(w1,w2) = log, ( 1)

SO-PMI(c) = Y PMI(c,PW)— Y. PMI(c,NW) (2)
pwePW nweNW
The selection of members of both word lists, PW and
NW, is essential to the performance of the method. Exist-
ing techniques of paradigm word selection include manual
selection as shown in [9], more recently decomposition and
clustering of co-occurrence matrices [7]. In this paper we
explore two different approaches by treating this issue as a



question of optimization, as described in subsection IV-C,
and as the problem of regression as in IV-D.

B. Error Measure

All the experiments described further depend on measur-
ing the performance of sentiment estimators. In order to
compare any two estimators (in both the classification and
the regression scenario), one needs to compute the errors
that an estimator introduced while predicting sentiment over
a lexicon. Error function E is defined over a set of words
(lexicon) L as:

E = Z dist(sc(w),se(w))

weL

3

For each word w, the distance function dist returns the
(absolute) number of segments between the correct segment
s¢(w) and the segment s, (w) estimated automatically. In this
context, segment corresponds to a range of SO-PMI values
mapped to a given score on human rating scale described in
Section III-A.

In Section VI the approach described here is modified so
that the dist function returns the number of classes between
the predicted and the correct one. The meaning of dist
is intuitive and corresponds to the sum of absolute errors
(SAE). However, instead of continuous values of residuals,
E operates on discrete scores.

The value of E can be minimized by finding optimum
locations for points separating each SO-PMI segment using
Powell’s conjugate direction method, determined the most
effective for this task in [7]. Powell’s algorithm is a non-
gradient numerical optimization technique, applicable to a
real-valued function which does not need to be differentiable
[10].

C. Paradigm Sets Optimization

The idea behind the experiment described in this section
is to formulate the choice of paradigm words as a problem of
optimization. To put it more precisely, the goal is to choose
two sets of paradigm words, subsets of L, that yield the
best estimation performance by minimizing E. Intuitively,
the selection should narrow to members of two subsets of
words, labeled as the most negative (146 words) and the
most positive (164 words) in human evaluation.

Unfortunately, the number of such combinations is ap-
proximately 6.9¢?! and the problem is far beyond the scope
of brute force computation. Precisely for this reason one
needs to devise a solution that makes it possible to evaluate
and select members of any paradigm set in a deliberate way.
The algorithm proposed here is based on this idea.

The first step is to estimate error related to each member
of PW and NW sets. This has to be done over a lexicon
L which maps lexemes to human-assigned scores, described
in Section III-A. The contribution of each paradigm word
pg € PW U NW, denoted as contr(pg) to the total SO-PMI
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score (as in equation 2) can be computed according to the
following formula:
occs(pg NEAR w))
contr =+ ) lo 4)
(re) =+ 1 los: ( loga(oces(pg))

where sign depends on polarity: the contribution of pg € PW
drives the SO-PMI score in equation 2 up, and vice versa;
occs indicates the number of corpus occurrences of a
paradigm word pg (denominator) and co-occurrences of
pg with w — one within 20 tokens of the other, in either
order (counter). In the above formula, NEAR only denotes
word proximity in a manner consistent with former works
conducted in the web as corpus paradigm, even though
the queries have been issued using the Poliqarp search
engine on a binary sub-corpus of the NKIJP, as discussed
in Section III. The error introduced by a paradigm word pg
can be approximated by the following formula:

error(pg) = contr(pg) Z dist(sc(w),se(w)) (5)

weL

The contribution depends also on the distance function
dist, which magnifies or nullifies the error according to
the results of comparison between human scoring and the
SO-PMI value computed for a given word. The total error
achieved using a pair of PW and NW sets is then distributed
proportionally to the influence that each paradigm word pg
has on the final SO-PMI value.

The core procedure of the proposed optimization can be
described as follows:

1: procedure OPTIMIZE(PWPN,L)
2: PWPN < randomize()
repeat
optsegments < Powell(PWPN,L)
totalerror < E(PWPN ,optsegments,L)
for all pg € PWPN do
Errors|pg| < error(pg)
end for
wppg «— argmax(Errors)
for all ¢ € candidates do
Scores|c] < SO-PMI(PWPN — wppg,c)
end for
bpc < argmax(Scores)
14: PWPN|wppg| < bpc
15: until wppg = bpc
16: end procedure
The algorithm begins with generating paradigm sets
PWPN - a random combination (sample without replace-
ment) of PW UPN. Subsequent steps (repeat loop) are as
follows:
e compute optsegments (optimum mapping of human
scores to SO-PMI segments using Powell’s method);
o calculate trotalerror of the current PWPN paradigm
combination over the lexicon L;

3
4
5:
6:
7
8
9

10:
11:
12:
13:

> until minimum found



average accuracy for 10-fold cross validation
context context
number length tags #features 2 classes 3 classes 5 classes
SVM ERT RF SVM ERT RF SVM ERT RF
1000 3 no 157666 0.85 0.82 0.76 0.73 0.61 0.57 0.55 043 0.40
300 3 no 127049 0.86 0.81 0.76 0.76 0.63 0.56 0.54 0.43 0.39
1000 3 yes 158064 0.82 0.80 0.76 0.67 0.57 0.52 0.47 0.40 0.38
300 5 no 189019 0.86 0.80 0.76 0.76 0.61 0.52 0.60 0.43 0.38
300 7 no 242809 0.89 0.80 0.75 0.80 0.60 0.52 0.61 0.42 0.38
1000 5 no 209798 0.87 0.80 0.75 0.77 0.61 0.52 0.61 0.41 0.38
1000 7 no 258286 0.89 0.80 0.75 0.77 0.59 0.54 0.65 0.44 0.37
300 3 yes 127449 0.82 0.80 0.75 0.67 0.58 0.51 0.48 0.38 0.38
300 7 yes 243762 0.85 0.79 0.75 0.69 0.56 0.49 0.53 0.37 0.35
300 5 yes 189696 0.81 0.79 0.76 0.67 0.55 0.49 0.51 0.37 0.36
1000 5 yes 210471 0.84 0.79 0.75 0.68 0.54 0.50 0.54 0.36 0.36
1000 7 yes 259227 0.84 0.79 0.75 0.68 0.54 0.51 0.53 0.40 0.35
Table I

SUPERVISED ESTIMATION RESULTS: AVERAGE ACCURACY IN 10-FOLD CROSS VALIDATION. ERT - EXTREMELY RANDOMIZED TREES, RF - RANDOM
FORESTS, SVM - SUPPORT VECTOR MACHINES

« estimate errors associated with each paradigm word pg
in PWPN;,

« select the worst performing pg (wppg) and replace it
with the best performing candidate bpc (this demands
evaluating all other positive or negative words on the
current PWPN combination, with pg replaced by each
of the candidates).

The method is a greedy one because at each step it
seeks for the worst performing member of the PW UPN
set and replaces it with the best performing candidate.
It turns out that the number of loops typically does not
exceed 4. However, the algorithm turns out to be effective
because the best combination obtained from 100 executions
of the procedure outperforms the results obtained with SVD
decomposition. This has been demonstrated in section VI.

D. Regressing on Paradigm Sets

The idea of extending the SO-PMI into linear regression
(RSO-PMI) comes down to the following:

)y

wePWUNW

RSO-PMI(c) = B.PMI(c,PW UNW)+¢ (6)

where B, are regression coefficients associated with each
word of the paradigm sets. Obviously, in the original formula
of SO-PMI B, =1 for we PW and B, = —1 for w e NW,
€ = 0. The results computed using the RSO-PMI formula and
two paradigm sets are presented and discussed in Section V1.

V. MACHINE LEARNING ON CORPUS CONTEXTS

This section describes an experiment with supervised
learning. It contains a brief overview of the classification
algorithms applied, a discussion of feature space, and finally,
the results. The algorithms used in this section were based
on [11].

A. Random Forests

The first classification algorithm applied is Random Forest
— an ensemble method consisting of tree predictors. In this
approach, each decision tree is built using randomly sampled
vectors. The result is produced as follows: each tree outputs
its classification (class label) for the given vector, then the
most frequent class is returned [12].

B. Extremely Randomized Trees

The other applied method is Extremely Randomized
Trees, another tree-based ensemble algorithm. The classifier
consists of a forest of unpruned randomized decision trees.
While growing the tree both feature and cut-point choice are
strongly randomized and the whole learning sample is used.
This approach helps to reduce the variance of the model.
As demonstrated by [13] it often outperforms other tree-
based classification methods, such as pruned CART trees
or Random Forests. The algorithm is also computationally
efficient.

C. Support Vector Classification

The third classification algorithm is the well-known Sup-
port Vector Machines (SVM). It has been shown to be ef-
fective at text categorization problems, often outperforming
other methods in high-dimensional problems. In the two
class scenario, the idea behind the training procedure is to
find a hyperplane, represented by vector w, that separates the
training vectors using a maximum margin hyperplane. For
more than two classes the model is made up of several binary
classifiers. The implementation used in this experiment is
based on a one-vs-rest scenario.

D. Input Features
Classification models were trained on random® occur-
rences of 1208 lexemes described in Section III-A. Word

3To rule out the possibility that the outcome may be influenced by the
arrangement of documents in the corpus.
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Classes 2 3 5 9

Global Opt 311 | 811 | 1211 | 2001
Global SVD 317 | 893 | 1494 | 2723
RSO-PMI Opt 315 | 957 | 1236 | 2549
RSO-PMI SVD 313 | 895 | 1191 | 2395
Extremely Randomized Trees | 231 | 659 | 1037 | 1931
Support Vector Machines 139 | 348 | 630 1686

Table II

E SCORES (ERRORS) COMPUTED FOR VARIOUS ESTIMATORS AND SENTIMENT SCALES.

contexts were sampled from the balanced, 300 million
segment version of the National Corpus of Polish. The input
vectors represent frequencies of words (in both orthographic
and base forms) and morphosyntactic tag occurrences at
specific positions, expressed as percentages.

The experiments were intended to compare different de-
signs of feature space and various types of features, as
described below. They involve two sample sizes, 300 and
1000 contexts of each lexeme, to create vector representa-
tion. Furthermore, three different concordance window sizes
(numbers of tokens left and right of the input word, taken
into account when creating vectors) were tested: of 3, 5
and 7 tokens spanning left and right of the input word.
Window sizes are narrow because the information about
position introduces sparsity and seems to be promising only
in the nearest neighborhood of the input word.

Due to the rich morphology of the Polish language, the
largest contribution to the number of features comes from
orthographic forms of words, i.e. the inflected forms, exactly
as found in the text.

E. Feature Selection

Prior to training the classifiers, feature selection was
applied by selecting the top performing percentile of features
according to p-values of the ANOVA F test. For each setting
(discussed below, such as window or sample size), four
different percentile values were tried (1%, 0.5%, 0.1%,
0.05%). Consequently, Table I contains only the results of
the top performing percentile for a given setting.

FE Results

Table I presents the results obtained with supervised
learning. It contains average precision scores from 10-fold
cross-validation. The experiments involved three different
settings as indicated by the number of classes, described
in section III-A.

Table I reveals that the number of sampled occurrences
has little impact on the number of features and more
importantly, on classification performance. Although some
of the best performing classifiers have been trained on
vectors obtained from 1000 occurrences, it seems that, over-
all, classifiers trained on 300 occurrences did not perform
significantly worse. Most likely, 300 occurrences provide
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a sufficient overview of typical lexeme usage to make
inferences about its sentiment orientation.

All of the three top performing classifiers did not use
morphosyntactic tags. While on one hand this result may
seem predictable because information about word sentiment
can be typically inferred from the lexical and semantic
dimension, on the other some of the syntactic clues of word
usage could be potentially useful for our task. For instance,
such information is important in word sense discrimination
from context vectors. Apparently, this is not the case for
discriminating word sentiment loading.

The other notable but trivial finding is that — as anticipated
— the average precision dropped as the number of classes
increased. The task of distinguishing the specific class
becomes more difficult as the number of classes increases,
however it is also clear that average accuracy becomes
less appropriate for measuring performance. Therefore, the
performance of selected best classifiers has been compared
against less supervised approaches in a more regression-like
scenario discussed in Section VI.

Differences between classification algorithms reveal one
interesting and clear pattern: in each case, the Extreme
Randomized Trees algorithm outperforms Random Forests
classifiers by a wide margin of 5 to 6 percentage points.

VI. COMPARISON

This section contains a comparison of both main ap-
proaches to sentiment lexeme estimation discussed in this
paper. It brings together unsupervised SO-PMI and RSO-
PMI, using two combinations of paradigm words: Opt
(the best combination computed using the optimization
algorithm described in section IV-C) and the SVD (the
combination obtained using SVD heuristic described by [7]).
Both sets have been tested in two approaches:

¢ Using regressed RSO-PMI models as in section IV-D.
Error values were computed in 10-fold cross-validation:
sentiment (and thus, error) associated with each word in
the lexicon was estimated using a model computed from
the remaining 90% of cases, members of the training
set.

Using the original SO-PMI formula directly, in a
straightforward setting: the performance of estimators
has been computed over the whole lexicon — in this
case, the same data that generated the sets. Arguably,



generating and testing the estimator on the same data
is a methodological mistake when assessing predictive
strength, nevertheless the computational cost of seeking
optimum combinations is too high to apply in n-fold
cross-validation.

Four unsupervised estimators were compared with the best
performing supervised classifiers, namely Support Vector
Classification and Extremely Randomized Trees. Each of
them used the combination and number of features deter-
mined optimal for a given number of classes. As it was
the case with RSO-PMI models, error values have been
computed in 10-fold cross validation.

The benchmark of estimators involves an aggregated error
measure E, defined in Equation 3. In the case of SO-PMI
continuous scores, the distance function dist returns the
number of (SO-PMI) segments between the correct segment
s¢(w) and the segment s.(w) estimated automatically. In the
case of the classification scenario and supervised algorithms,
is has been modified to return the number of classes between
the correct and the predicted one. Because both SO-PMI
segments and classes are mapped onto human scores, the
meaning remains the same and both values, computed over
the same lexicon, become comparable.

In this case, comparing both approaches should not rely on
precision, which is not the most suitable measure in the case
of multiple predicted classes of ordinal structure. Accuracy
does not distinguish between types of errors and to illustrate
the point, confusing positive with neutral words should not
be equally treated as confusing positive with negative words.

The results are presented on Table II and Figure 1. Both
illustrate the same data.

In each case, the maximum possible error can be com-
puted as the number of classes times the size of the lexicon
(1208).

The results indicate that supervised methods outperform
unsupervised approaches by a significant margin. This con-
clusion is obviously an expected one and quite likely the
SVM classifier should become the preferred approach. The
difference between the SVM and the second best supervised
method, ERT, is more surprising. The performance of the
ERT algorithm is not far better than the globally optimized
selection of paradigm words and the basic SO-PMI algo-
rithm. However, one should interpret it with caution, as the
results are not fully comparable.

VII. CONCLUSIONS

In this paper we extend and improve the main existing
approach to unsupervised estimation of lexeme sentiment.
The method, based on computing SO-PMI, has been im-
proved in two ways. First, by proposing a randomized greedy
algorithm of optimization of SO-PMI paradigm sets. Second,
by extending it into a linear regression formula: RSO-PMI.
Both extensions are demonstrated to bring an improvement
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Figure 1. E scores (errors) computed for various estimators and sentiment
scales.

over the existing state of the art approach, based on SVD-
backed heuristic of paradigm set members for SO-PMI.

The second part of this paper describes supervised tech-
niques, based on machine learning. We train three classifica-
tion algorithms on vectors generated from random samples
of word contexts from the National Corpus of Polish. We
evaluate different window and sample sizes, also examine
the influence of morphosyntactic information.

Finally, we evaluate all the approaches on a single bench-
mark. The focus is on the performance of both unsupervised
and supervised techniques on sentiment estimations of vari-
ous granularity. We start from the simplest binary scenario of
distinguishing evaluative words (positive and negative) from
neutral ones. In the next step, we increase the granularity
to a multi-class setting: into 3 classes (positive, neutral and
negative), then 5 and 9 classes of various sentiment intensity.

Overall, the results turn out to be very promising and
indicate superiority of supervised algorithms, especially for
lower sentiment granularity predictions. The best perform-
ing classification algorithm is the Support Vector Machine,
which outperforms any other evaluated method. We intend to
use this method to generate a high-quality sentiment lexicon.

Unsupervised (regression-like) methods turn out to be



an interesting alternative in the case of more fine-grained
sentiment scales. Especially in the case of 9 point sentiment
scale, the differences become less emphasized.
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