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Introduction

• Increasing interest in sentiment analysis
– Data: reviews, news article, blogs, tweet, youtube …
– Approach: various models, different levels of 

information
– Classification level: word, document, aspect/features
– Task definition: polarity, subjectivity, emotion, 

speaker/writer vs. listener/reader
– End task goal: business intelligence, stock, poll…
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Supervised learning
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Problems with supervised classifiers

• Supervised learning requires 
annotated training data  
– Lack of data for many domains
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• Mismatched training and 
test conditions 
– Differences in domain/genre, 

style, class labels, etc.
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Example of a new domain: speech

• Large amount of speech data that contains 
sentiment/affect
– Talk shows, debates, conversations, meetings, etc.

• Speech contains rich information about 
speakers’ affective states
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Speech example

D : could the middle button of the on-screen menu function as a power  
button?  [pos-sub]

C:  um not really,  [neg-sub]
C:  it would make it hard to turn the machine off, to turn your TV off. 

[neg-sub]
A:  mm-hmm [obj]
B:  if you pressed and held it maybe. [pos-sub]
C:  yeah, yeah, that that’d be one way of doing it, yeah. That’d work, 

yeah. [pos-sub]
D:  if you like held it down, that would be on off.  [pos-sub]
B:  yeah. On off, that’s a possibility, yeah. [pos-sub]
A:  okay.  [obj]

6



FEARLESS engineering

This talk

• Goal of this study: subjectivity detection 
across different domains

• What is the domain difference?
• Can unsupervised or semi-supervised 

learning help?
• What are the impacting factors? 
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Data: AMI

• AMI meeting
– Multiparty meeting corpus (role playing scenario)
– Classification units based on dialogue act labels (DA).

– Example

• It does make sense from maybe the design point of view. 
(SUBJECTIVE)

• My task was this time to put up a questionnaire.
(OBJECTIVE)
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Data: movie data

• Movie data (Pang and Lee 2004)
– Subjective sentences from movie reviews and objective 

sentences from movie plot summaries

– Example

• It's hard to tell with all the crashing and banging where 
the salesmanship ends and the movie begins. 
(SUBJECTIVE)

• The movie begins in the past where a young boy named 
Sam attempts to save celebi from a hunter. (OBJECTIVE)
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Data: MPQA

• MPQA corpus (Wilson and Wiebe 2003)
– Sentences from news articles and labeled by human.

– Example

• The world community should not tolerate crime of war. 
(SUBJECTIVE)

• The European Commission announced it had pledged a 
nancial package of grants and loans totaling 530 million 
euros (450 million dollars).  (OBJECTIVE)
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Data statistics
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Movie MPQA AMI

# of sents
subjective 5,000 5,000 4,946

objective 5,000 5,000 4,946

sent length

min 3 1 3

max 100 246 67

mean 20.37 22.38 8.78

variance 75.26 147.18 34.26

vocabulary size 15,847 13,414 3,337

Inter-annotator agreement N/A 0.77 0.56
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Unsupervised learning approach

• Evaluate two semi-supervised methods to iteratively 
learn from unlabeled data
– Self-training
– Calibrated EM
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• Create initial training set: use a 
subjective lexicon to calculate 
subjectivity score for each 
sentence/DA.   
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Self-training

• Assumption: one’s own high confidence 
prediction is correct

• Algorithm:
– Train classier using initial labeled data 
– Use trained classier to label unlabeled data
– Add top ranked n subjective and n objective 

examples to training data, remove from unlabeled
– Repeat 
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Self-training

• Advantage
– Simple method
– Applies to any classifiers

• Disadvantage
– Early mistakes may have a negative impact, can’t 

remove added labeled examples
– No guarantee on convergence
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Basic EM for Naïve Bayes classifier
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Expected likelihood:
Guess of unknown

Parameters (probabilities)

M step
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Calibrated EM

• Problem with Naïve bayes: posteriors are not 
accurate, tend to be close to 0 or 1

• Calibrated EM (Tsuruoka and Tsujii 2003): 
– shift posterior probability p of unlabeled data to 

generate desired class distribution.
• p’ = inverse_sigmoid(p)  
• p’= p’ – median of p’
• p = sigmoid (p’)
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EM for naïve Bayes 

• Advantage
– Clear probabilistic framework
– Can be effective if the model is close to correct
– No hard decisions for added samples

• Disadvantage
– Model may not be correct
– Local optima in EM 
– Added samples may hurt performance
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Experimental setup

• Use unigrams as features (bag-of-words 
model)

• 5-fold cross validation
– divide the corpus into 5 parts
– in each run, reserve one part as test set, and treat 

the rest as unlabeled data.
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Supervised results
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Unsupervised results
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Analysis: initial training set

• How does the accuracy and size of the 
initial training set affect performance?
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size movie MPQA AMI

sub obj Acc
On test

sub obj Acc
On test

sub obj Acc
On test

100 95.20 82.20 59.93 83.20 87.60 60.45 49.60 71.60 50.51

200 90.20 82.00 71.63 85.60 86.60 63.83 53.40 71.00 53.81

1000 82.48 80.88 77.62 85.76 87.64 66.98 65.96 68.56 60.53

2000 79.24 79.04 79.24 85.18 87.46 68.75 66.98 69.04 60.39

3000 77.13 77.31 79.64 82.53 85.92 70.05 67.05 69.89 60.46
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Analysis: semi-supervised setting

• What if we use labeled data as initial 
training set, i.e., semi-supervised learning?

22

2k labeled 
instances

88

89

90

91

88

89

90

91

movie_ST
movie_cali_EM

70

71

72

73

74

70

71

72

73

74

ac
cu

ra
cy

 (
%

)

MPQA_ST
MPQA_cali_EM

63

64

65

66

63

64

65

66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
iteration

AMI_ST
AMI_cali_EM



FEARLESS engineering

Self-training analysis: accuracy of added 
examples
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Self-training analysis: control added 
example accuracy
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Self-training analysis: different size of initial 
data
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EM analysis: different initial size
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EM analysis: effect of calibration
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Summary of results

• Observe significantly different patterns in 
speech data vs. other two corpora.

• The base classifier performance has a 
substantial impact on iterative learning.

• For corpora with low classification accuracy, 
the bootstrapping methods are useful only 
when the initial training size is small and 
initial accuracy is low.
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Discussions

• Class distribution 
– Similar observation on imbalanced data
– However, assumed distribution is known

• Domain difference 
– Vocabulary, sentence length, error patterns on 

subjective and objective sentences

• Model limitations
– Bag of words 
– Expect similar patterns when changing the 

baseline learning approach (?)
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Improving sentiment analysis on speech data

• Sentiment analysis is hard on spoken text
• How can we improve its performance? 

– Increase annotated training data
– Domain adaptation
– Design domain specific models/features

• Previous studied investigated using acoustic/prosodic 
cues in sentiment analysis 
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Other work

• Summarization of speaker’s opinion
– Used Switchboard conversations

• Emotion recognition from speech

• Automatic summarization
– News article, meetings, social media

• Text normalization in social media
• Language processing in clinical applications
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