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What is this talk about?
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The battery life of this camera is too short.

Aspect Aspect subjective

e

The battery life of this camera is too short.

Aspect Aspect subjective
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Outline

B Introduction

Probabilistic model for subjective term and target identification
Evaluation of different pipeline orders

Joint Model

Evaluation of the Pipeline vs. Joint Model

@ Summary and Discussion
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Introduction

m Sentiment Analysis/Opinion Mining
m Often modelled as classification or segmentation task
m Fine-Grained Opinion Mining:
m Involves prediction of aspect/target, subjective terms, polarity,
relations
m Our previous work: Developed model to analyze:
m Given subjective phrases = impact on target prediction
m Given targets = impact on subjective phrase prediction
m Both with perfect and realistic prior knowledge
m Contribution of this paper:

m Present a flexible model which takes into account
inter-dependencies
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Previous and Related Work

m Extracting subjective phrases:
B. Yang et al. (2012). “Extracting opinion expressions with
semi-Markov conditional random fields''. In: EMNLP-CoNLL
m Given perfect subjective phrases, predict targets:
N. Jakob et al. (2010). “Extracting opinion targets in a single- and
cross-domain setting with conditional random fields''. In: EMNLP
m [LP approach
B. Yang et al. (2013). “Joint Inference for Fine-grained Opinion
Extraction'. In: ACL

Our work:

m Real-world setting, predict all entities
m Relational structure in multiple directions
= Flexible, easy to augment
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Outline

Probabilistic model for subjective term and target identification
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Factor Graphs

A Factor Graph is a bipartite graph over factors and variables

m Factor ¥; computes a scalar
over all variables

m let X be observed variables, y
output variables

m Common definition:
\Iji()_(‘h VI) ==
exp [ > Ofia(%, ¥i)
(parameters 6 and sufficient statistics fii(-))

®m Probability distribution

p(i&) H \IJ Xl,yl

g E=( z)T
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Templates for Factor Graphs

m Probability distribution

yl)_(’) = H exp <Z eklfkl X|7Y| >

m A Factor Template T; consists of
= parameters 6 and statistic functions fj
= some description of variables yielding tupels (X, ¥j)
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Templates for Factor Graphs

Ty: same value and y;

T>: different value and y;

m Parameters 0, feature functions fji are shared across tupels

= 1 5 S
= (19 = 775 11 qH exp (Z ekjfkj(xhyi))
TET (%,5) €T k
m Examples for descriptions:
Markov Logic Networks (Richardson et al., 2006)

Imperatively defined factor graphs (McCallum et al., 2009)
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Variable Definition

m Extraction of aspects and subjective phrases as segmentation
m Application of a semi-Markov-like model

® Implementation in FACTORIE (McCallum et al., 2009)

The battery life of this camera is too short.

Aspect Aspect subjective
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Templates

The battery life of this camera is too short.

ect ect su ve

m Single-Span-Template
m lower-case string, POS, and both
m Combined with 10B-like-prefixes
m Sequence of POS tags

Roman Klinger and Philipp Cimiano 10 /24
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Templates

The battery life of this camera is too short.

Aspect Aspect subjective

m Inter-Span-Template (partially inspired by Jakob et al., 2010)
m Does the target span contain the noun that is closest to the
subjective phrase?
m Are there spans of both types in the sentence?
m Is there a one-edge dependency relation between
subjective phrase and target?
m Single-Span features only if one of those holds!
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Learning and Inference

m Inference: Metropolis Hastings sampling
(a Markov Chain Monte Carlo method)

m Learning: Sample Rank (Wick et al., 2011)

Objective Function

t
f(t) = max oft.¢)
ges g

—Oé'p(t,g),

m tis aspan, gis a gold span
® o(t, g) is length of overlap

® p(t, g) number of 'outside' tokens
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Outline

Evaluation of different pipeline orders
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Cameras (Kessler et al., 2010)

m Given subjective terms, how good is target prediction?
m Predicting subjective terms, how good is target prediction?
m Given target terms, how good is subjective prediction?
m Predicting targets terms, how good is subjective prediction?

1
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Roman Klinger and Philipp Cimiano 1372y



Cars (Kessler et al.

2010)
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Twitter (Spina et al., 2012)
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Outline

[ Joint Model
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Idea for Joint Model

m Model relation explicitly

The battery life of this camera is too short.

Aspect Aspect subjective
Sentence

m Features in three templates
m Single Span
m Inter Span
= Relation
(new: similar to inter span, but measuring another variable)
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Sampler

m Propose spans, span changes

m Propose adding relations for each aspect-subjective pair

m Propose subjective phrases

m Propose aspects as targets of each subjective phrase

m Propose span changes, removing relations
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Objective functions

= Spans as before (f(t))
m Relations accuracy-based

Relation:

—1 ifo(su,su*) =0 oro(ta,ta*) =0
h(su,ta) =  max ( ) ( )

(su*,ta*)erel* %(O(SU, SU*) + o(ta,ta*)) else
Span:

g(t) = Bi(t) + Z h(su, ta)

(su,ta)€erel(t)
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Pipeline vs. joint

Iteration Pipeline Model Templates Joint Model Iteration

Training Prediction Training/Prediction

Relations

|

1 Subjectives Subjectives Single span Subjectives
) ) gle sp \ ]

Relation — | Aspects 1

2 Aspects Aspects jlnterspan / Relations
—T
3 Relations

1
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Results

Camera

Fy

Pipeline Joint

Aspect Partial =
Subjective Partial /2
Relation Partial C——1
Aspect =
Subjective
Relation =3

F1

Pipeline Joint
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Summary

m Joint Modelling has positive impact
m Clearly observable for aspects
m Slight to moderate drop for subjective phrase and relation

m Easy do adapt to other characteristics
(opinion holder, polarity, dependencies, etc.)

Roman Klinger and Philipp Cimiano 21/ 24



1 71 A 7

Introduction ©O Probabilistic Model ©OOOC0COO Evaluations 1 00O Joint Model ©O0O Evaluations 2 © Summary ©

Bibliography I

Jakob, N. et al. (2010). “Extracting opinion targets in a single- and
cross-domain setting with conditional random fields'. In: EMNLP.

Kessler, J. S. et al. (2010). “The 2010 ICWSM JDPA Sentment Corpus for the
Automotive Domain''. In: ICWSM-DWC 2010.

McCallum, A. et al. (2009). “FACTORIE: Probabilistic Programming via
Imperatively Defined Factor Graphs''. In: NIPS.

Richardson, M. et al. (2006). “Markov logic networks'. In: Machine
Learning 62.1-2, pp. 107—136. ISSN: 0885-6125.

Spina, D. et al. (2012). “A Corpus for Entity Profiling in Microblog Posts"'.
In: LREC Workshop on Information Access Technologies for Online
Reputation Management.

Roman Klinger and Philipp Cimiano

2212



Fakultét - AG

Introduction ©O Probabilistic Model ©OOOC0COO Evaluations 1 00O Joint Model ©O0O Evaluations 2 © Summary ©

Bibliography Il

@ Wick, M. et al. (2011). “SampleRank: Training factor graphs with atomic
gradients''. In: ICML.

@ Yang, B. et al. (2012). “Extracting opinion expressions with semi-Markov
conditional random fields'. In: EMNLP-CoNLL.

[ - (2013). “Joint Inference for Fine-grained Opinion Extraction'. In: ACL.

Roman Klinger and Philipp Cimiano 23/ 24



Thank you!




	Introduction
	Probabilistic model for subjective term and target identification
	Evaluation of different pipeline orders
	Joint Model
	Evaluation of the Pipeline vs. Joint Model
	Summary and Discussion

