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Abstract—Each tweet is limited to 140 characters. This
constraint surprisingly makes Twitter a more spontaneous plat-
form to express our emotions. Detecting emotions and correctly
classifying them automatically is an increasingly important task
if we want to understand how large groups of people feel about
an event or relevant topic. However, constructing supervised
classifiers can be a daunting task because of the high manual
annotation costs. We propose constructing emotion classifiers
with a minimal amount of initial knowledge (e.g. a general-
purpose emotion lexicon) and using a semi-supervised learning
method to extend it to correctly detect more emotional tweets
within a specific domain. Additionally, we show that our
algorithm, Balanced Weighted Voting (or BWV) is able to
overcome the imbalanced distribution of emotions in the initial
labeled data. Our validation experiments show that BWV
improves the performance of three initial classifiers, at least
in the specific domain of sports. Furthermore, its comparison
with other two learning strategies reveals its superiority in
terms of macro F1-score, as well as more stable performance
among different emotion categories.

Keywords-Emotion Recognition, Twitter, Semi-Supervised
Learning, Text Mining, Natural Language Processing

I. INTRODUCTION

The abundance of emotions we feel is reflected in our
language. Their automatic recognition can help us build
more sophisticated social and personal applications, includ-
ing those that study social relations [1], enhance human-
computer interaction [2], and summarize public reactions
[3]. In this work, we model "emotions" as belonging to
a finite number of categories and formulate a problem of
a multi-category emotion recognition in text [4], [5]. For
a given text sample, we aim to detect which emotion(s) from
the given set it expresses.

While this problem has received substantial attention
from the research community, constructing a universally
applicable classifier remains an unsolved and complex task.
One difficulty lies in the context-dependency of emotions:
their linguistic expressions and causes vary with different
domains (e.g. studying vs. sports), types of text (private mes-
sages, online statuses, or posts), and even the author’s style.
Furthermore, the set of suitable emotion categories varies as
well, depending on the chosen domain and application. For
example, Love would be a frequent emotion in interpersonal

communications, while relatively rare in technical forums.
Due to these intrinsic differences, a domain-independent
classifier can have only limited accuracy on any given
domain. Thus, we believe that the ability to build or adapt
an emotion classifier for a specific domain will greatly
enhance classification performance.

This paper proposes a novel semi-supervised method for
this purpose. It leverages unlabeled data within a specific
domain to extend the initial limited classifiers in order to
capture the specificity of the target domain. We consider
as the initial classifiers those that are either based on
general-purpose emotion lexicons or trained on limited data
within the domain. They are likely to have limited coverage
of present emotions, and thus require further adaptation.
Nevertheless, they contain prior knowledge, which the semi-
supervised algorithm can potentially extend (under the as-
sumption that domain-specific emotional expressions will
appear within the text labeled by the initial classifier).

Our method is based on the idea of distant learning [5],
[6]. Its overview is shown in Fig. 1. First, the initial classifier
is applied to the unlabeled data to obtain the pseudo-labeled
data. Second, this annotation is refined by choosing for
each text the most prominent labels among those suggested.
Third, the features, n-grams from the text, are extracted and
filtered out. Then, the re-weighting techniques are applied
to rebalance the annotation. Finally, the supervised learner
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trains the resultant classifier using the rebalanced pseudo-
labeled data and the selected features. This classifier can
later be applied to other data within the domain.

A distant learning approach was shown to be effective for
polarity [7], [8] and emotion recognition [5], [6]. However,
it was tested only on domain-independent tweets. It was not
clear a priori if such an approach would be beneficial or
harmful when applied exclusively within one domain.

We test our semi-supervised method on sports events
reactions on Twitter. We focus on the set of 20 emotion
categories from the Geneva Emotion Wheel (GEW) [9],
[10]. Its fine-granularity allows making more insightful
discoveries about emotions. For this emotion set several
initial classifiers are available; we consider three of them.

This paper makes the following contributions:
• We develop a semi-supervised method that uses unla-

beled data to extend limited initial emotion classifiers
for a specific domain.

• We design a learning algorithm, Balanced Weighted
Voting, that addresses an imbalance of emotion labels
in annotated data—a problem which is poorly studied
for emotion classification.

• We experimentally show that this method results in
substantially better classifier quality than that of the
three initial ones: the relative increase of macro F1-
score is between 24% and 105%.

• We compare this learning algorithm with two other
commonly used supervised classifiers: Naïve Bayes and
a PMI-based one. With Balanced Weighted Voting, we
achieve not only better general performance (macro
F1-score is higher in average on relative 33%), but
also consistently better performance throughout many
categories.

The paper is organized as follows: The following section
reviews related work. Then, we present the formal descrip-
tion of our semi-supervised method and its steps. Next, we
describe the experimental setup and present our results. The
last sections conclude the paper and discuss future work.

II. RELATED WORK

Multi-category emotion recognition in text is an increas-
ingly popular sub-topic in sentiment analysis [11], [12] with
many methods adapted from text polarity classification. The
use of lexicons is one such adaptation. Just as sentiment
lexicons store terms’ polarities [13]–[15], emotion (or affec-
tive) lexicons provide term-emotion associations. Some list
only terms directly expressing an emotion, such as “happy”
for Joy (the GALC lexicon is an example [9]). Others
contain additional terms linked to some emotional expe-
rience, such as “comfort” for Joy in WordNetAffect [16],
“entertain” in NRC [17] or “visit friend” in EmoSenticNet
[18]. Counting the number of lexicon terms appeared in
the text for each emotion can be used as helpful features
for various text classification problems [19], [20], including

emotion classification itself [5], [21]. Rule-based algorithms
go beyond simple keyword-spotting by taking into account
sentence structure and syntactic features, such as presence
of negations, intensifiers, or conjunctions [22], [23]. While
such lexicon-based methods are unsupervised and can be
applied to any domain, they do not cover the full variety of
emotional expressions used in the language.

Researchers adapted semi-supervised techniques to extend
given lexicons (or term seeds). They define several metrics
of term similarity, and then use them to cluster or classify
new terms into emotion categories based on their similarity
to those given. The original WordNetAffect [16] and one
part of Synesketch lexicon [23] were built in this way,
with similarity metrics defined using semantic relations,
such as synonymy, from WordNet [24]. In construction
of EmoSenticNet lexicon [18], [20], [25], additional term
similarities were derived from term co-occurrences on the
database of emotional experiences using Pointwise-Mutual
Information (PMI) [26]. Other corpora used to construct
emotion lexicons are web n-grams [27] and tweets [21]. For
Twitter data, the following iterative algorithm can grow the
lexicon of emotional hashtags: at each iteration, it learns
an emotion classifier from the data extracted by the given
hashtags, and applies it to the new tweets to discover new
hashtags [28]. The main limitation is that such lexicon-
growing methods were designed and evaluated to generate
domain-independent resources; whereas the lack of domain-
specific contextual knowledge and emotional expressions
limits their application.

Supervised machine-learning algorithms are appropriate
for training on domain data. For emotion recognition, re-
searchers have experimented with different classifiers, such
as NaïveBayes or SVM, and with various linguistic, stylistic,
and syntactic features, such as n-grams, punctuation marks,
parts of speech, and topics [4], [21], [29], [30]. However,
supervised techniques require substantial annotated data,
which are expensive to obtain for each domain.

With Twitter, researchers overcome the lack of anno-
tated data by crawling the tweets with emotional hashtags
and emoticons [5], [6], [21], [31]. Following the idea of
distant learning—a kind of semi-supervised learning—such
tweets serve as pseudo-annotated data and are used to
train machine-learning classifiers in a supervised manner.
This approach avoids costly manual annotation and allows
relatively free choice of the emotion categories and domains
to study. Yet, for a concrete domain, like sports or financial
events, such pre-coded hashtags are likely to be found in
only a limited amount of tweets. In this work, we inves-
tigate whether a distant learning approach is viable when
applied within a restricted domain, and when initial pseudo-
annotation is performed by the available emotion classifiers
instead of seed keywords.

Multiple other algorithms were designed for semi-
supervised learning ([32] gives an overview). One method,
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applied to emotion recognition, represents the given text
corpus in a reduced-dimensionality vector-space model and
assigns emotions based on similarity to computed emotion
vectors [33]. This method, however, is not easily scalable
and does not allow classification of unseen data. For multi-
category text classification, a commonly applied method is
Naïve Bayes extended with the Expectation-Maximization
procedure [34]. It first iteratively learns the parameters over
the currently annotated data, and then re-annotates the data
using those found parameters. For comparison, we also apply
a Naïve Bayes classifier in our experiments, but start from
the data pseudo-annotated by the given initial classifier.

Additionally, we review the advances of semi-supervised
methods for binary polarity classification, a problem closely
related to emotion recognition. Experiments show semi-
supervised classifiers outperform supervised ones when few
labeled data are available [35]. The idea of distant learning
to train polarity classifiers from the pseudo-annotated data is
successfully applied to Twitter data as well [7], [8]. Among
other methods, iterative self-training approach was shown to
be profitable [36]. To compare, we adapt one method used
both for polarity and emotion classification: the classifier
based on computing Pointwise-Mutual Information (PMI)
between terms and emotion categories [21], [37].

On the whole, none of the related work studied how to
apply the semi-supervised learning framework for multi-
category emotion classification within a specific domain of
tweets—the main problem we tackle in this paper. While
previous emotion recognition methods were designed for a
small set of categories, we design and validate the method
that is able to cope with multiple emotion categories (a fine-
grained problem). Also, we are, to the best of our knowledge,
the first to deal with the problem of unbalanced emotion
distribution present in a given corpus. We also compare the
designed method with the two established algorithms from
the related subject areas of polarity and text classification.

III. SEMI-SUPERVISED METHOD DETAILS

We start by introducing the definitions used to describe
the problem and the method suggested. We formulate the
problem of emotion recognition as a multi-label classi-
fication task. Given the set of emotion categories E ={

e1,e2, ...,e|E|
}

, the classifier detects for a given docu-
ment d—in our case a tweet—which emotion categories
are expressed and outputs their label set

{
eik

}
⊆ E. If no

emotion is present, the Neutral label e0 is output.
We also define the emotionality of the text p̄ =(

p1, p2, . . . , p|E|
)

as the distribution of the emotion cate-

gories expressed in the text, with
|E|
∑

i=1
pi = 1 and ∀i pi ≥ 0,

where pi is the weight of the i th emotion. The emotion-
ality can be transformed into a multi-label by applying a
technique adapted from the alpha-cut for fuzzy sets [38].
We denote this operator as A:(p̄,α)→ 2E , where α defines

a threshold on the emotion weight for the emotion to be
included in the multi-label. A(p̄,α) returns all the labels
ei that have the weight pi ≥ α · p∗, where p∗ = max

i
pi

is the maximal emotion weight within the distribution.
Thus, all the labels with the weight close enough to the
maximum weight are output. If α = 1, only the labels
with the maximum weight are output. For example, for the
emotionality (0,0.2,0.3,0.5,0, ...,0) the multi-label {e3,e4}
would be found for α = 0.5. In the opposite direction,
a multi-label can be transformed into the emotionality by
specifying the weights of present labels being 1 and then
normalizing the distribution.

Our semi-supervised method is portrayed in Figure 1. It
requires as an input some limited emotion classifier, taken
as an initial classifier I, and data collected within a desired
domain, considered as unlabeled data U . The first step is
to apply this initial classifier I to the unlabeled data U
in order to obtain the pseudo-labeled data L. We assume
that the initial classifier returns the emotionality for the
given text d, that is it assigns to the document d ∈ U
the emotionality p̄(d) =

(
p1 (d) , p2 (d) , . . . , p|E| (d)

)
. The

pseudo-labeled data L contains the set of tweets with the
mapped emotionalities. Those tweets where emotions were
not found, i.e. the neutral ones, are not included in L. The
pseudo-labeled data generated in this way are the entry point
of the learning process described below.

The learning process starts from the annotation refine-
ment. It is applied to each tweet individually. Given the pa-
rameter α , it sets to zero the weights of those emotions that
would not be included in the multi-label: ei /∈ A( p̄,α), and
then normalizes the distribution. This eliminates emotions
with relatively low weights. Whether to apply this refinement
or not is also the parameter of the method.

The next step is to select features over which the classifier
will be learned. We use 1-, 2-,. . ., n-grams as features.
We keep only those that appeared K or more times in the
pseudo-labeled dataset L. Among them, we select features
that are indicative of emotions by estimating their polar-
ity. For this, we compute a term’s semantic orientation
using the Pointwise-Mutual Information (PMI) [26]. We
first identify the polarity label (l+ or l−) of each tweet

d ∈ L as sign
(

∑
i∈E+

pi (d)− ∑
i∈E−

pi (d)
)

, where E+ ⊂ E and

E− ⊂ E are the sets of positive and negative emotions
correspondingly. Then the semantic orientation SO of a
term t is computed by

SO(t) = pmi(t, l+)− pmi(t, l−) = log
P(t, l+)P(l−)
P(t, l−)P(l+)

= (1)

= log
[

1+ f req(t, l+)
1+ f req(t, l−)

· |V |+ f req(l−)
|V |+ f req(l+)

]

where V is the used vocabulary of terms, f req(l±) is
the number of positive (l+) or negative (l−) tweets, while
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f req(t, l±) is the number of tweets with the term t, which are
either positive or negative. Smoothing is used in the formula:
we add 1 to each term frequency computation, and |V | to
class frequency computation (in order to compensate for the
additions to term frequencies). The higher the absolute value
of SO(t), the more confident we are that the term t has
strong polarity, and is thus potentially emotional. We filter
out the features that have an absolute score SO(t) lower
than a threshold τ . The remaining features are used for the
representation of the documents from L.

Having the documents (i.e. tweets) with the associated
emotionalities and their feature representation, we can now
learn a final classifier in a supervised manner. We apply
Balanced Weighted Voting as such a supervised learner. Its
choice also defines how the resultant classifier will work.

A. Balanced Weighted Voting

This algorithm is based on the emotion lexicon, in which
each feature (n-gram entry in our case) has the associated
emotionality of the term w̄(t) = (w1(t),w2(t), . . . ,w|E|(t)),
where wi(t) is the weight of the term t for the emotion i.
To compute the emotionality of the tweet document p̄(d),
we search for the terms in the lexicon within its text, sum
the weights of the found lexicon entries and normalize the
vector. If no lexicon terms were found, the Neutral label is
returned. Otherwise, the output is an emotion multi-label
obtained from the found emotionality with the operator
A(p̄(d),α0), where α0 is the algorithm parameter. This
weight-based application structure is similar to the one used
in [39]. However, the learning process is different.

For learning, we know the emotionality for each tweet d
p̄(d) =

(
p1 (d) , p2 (d) , . . . , p|E| (d)

)
returned by the initial

classifier. In Balanced Weighted Voting (BWV), we first
balance the distribution of the emotions: we compute the
rebalancing coefficient ci for each emotion and multiply by
it the corresponding emotion weight for each tweet. We then
compute the weights of emotions for a term t as

wi(t) =
∑

d: t∈d
ci · pi(d)

∑
i

∑
d: t∈d

ci · pi(d)
(2)

After the preliminary evaluations with several rebalancing
options, we define the coefficient for the i-th emotion as
ci =

1
∑
d
|d|·pi(d)

, where |d| represents the number of extracted

features in the tweet d. This means that the emotion
categories are balanced based on the number of features
appeared in each of them, as was inspired by [40].

The original Weighted Voting approach [39] is different
from BWV only in that it lacks the rebalancing coefficients
ci. This makes it project the distribution of emotions in
the annotated data onto the emotionality of each term. A
term obtains a higher weight for the emotion which appears
more often. Thus, the created lexicon is biased towards

more dominant emotions. Our approach, Balanced Weighted
Voting, involves re-weighting the emotional assignments of
the tweets to cope with the skewness of the distribution.
This re-weighting process is equivalent to the re-sampling
approaches applied to cope with class imbalances for the
classification problems [41].

IV. EXPERIMENTS

In our evaluation, we focus on the domain of sports events
reactions in Twitter. This domain was chosen because it
contains various emotions with domain-specific emotional
expressions; and because it was already studied in the
context of multi-category emotion recognition, resulting in
the availability of a limited within-domain classifier [39].

A. Emotion Model

In continuation with the previous work [39], we use the
same 20 emotion categories from Geneva Emotion Wheel
(GEW, v. 2.0). This model was developed in the psychologi-
cal research in order to systematize self-reports on emotional
experience [9]. The categories are enumerated in Table I.

GEW has multiple advantages. Whereas common sets of
basic emotions, such as Ekman’s [42] or Plutchik’s [43],
contain up to 8 categories, the higher granularity of GEW
allows discovering more insightful details about emotional
reactions. Moreover, it contains as many positive emotions as
negative ones (10)—a rare characteristic for emotion models.
Compared with the OCC model [44] (another fine-grained
categorization model with 22 categories differentiated based
on cognitive attribution of emotion-invoking factors), we be-
lieve that GEW emotions are more likely to be distinguished
without extracting cognitive attributes. Another alternative
could be the 24 primary emotions from the Hourglass of
Emotions [45], the advanced representation of Plutchik’s
emotion wheel distinguishing 4 affective dimensions and
specifying 6 emotion levels in each. However, this model
lacks cognitive-based emotions such as Pride, Envy, or
Pity, while Pride, for example, was shown previously to
be dominant in the domain of sports events reactions [39].

B. Data Description

Our data consist of Twitter posts collected during the two
weeks of the 2012 Olympic Games by querying Olympic-
related keywords, such as “Olympic” or “London2012”. This
resulted in 33.2 million tweets written in English. We use
different subsets of those tweets in the experiments.

1) Unlabeled Data: We randomly chose 250,000 tweets
as the unlabeled data within the semi-supervised framework.
They are filtered: we included only the tweets containing
more than 3 words (not counting hashtags), that are not a
retweet and which have no URLs present. We also avoided
including tweets with duplicate text.

396



2) Data Labeled with Emotional Hashtags: Based on
the GALC lexicon [9], we define the set of 167 emotional
hashtags for all GEW emotion categories.1 By extracting
the tweets containing those hashtags at the end of the text,
we generate the pseudo-annotated tweets used for tuning the
meta-parameters of the algorithms and for the final tests. We
again exclude the tweets with URLs, retweets, or repeated
tweets. The distribution of the refined version of this dataset
is given in Table I (Full set). In a similar approach, but with
fewer emotions, Wang et al. [5] evaluated precision of tweet-
emotion associations to be 93.16%, which we consider of
substantial quality. We also exclude tweets where several
emotional hashtags were found. As these data are intended
for testing the algorithms’ outputs, the hashtags used for
generation of the labels are removed from the texts.

3) Presumably-Neutral Data: Successful emotion recog-
nition also implies an effective distinction between the Neu-
tral and Emotional categories. While we do not introduce
a hierarchical classification [46], we consider Neutral as a
separate class e0. Classifiers then work with the extended
set of categories E0 = E ∪ e0. If e0 is within the multi-
label output, we output only Neutral category. This avoids
constructing classifiers that detect emotions in all tweets.

To identify presumably-neutral tweets, we assume that the
presence of a URL can indicate less emotional tweets, such
as news or information sharing. We extracted such tweets
and observed that to enforce tweet neutrality, we should
in addition avoid presence of usernames (which makes
sharing personal) and emoticons (which explicitly indicates
the presence of emotions). In the observation of 100 tweets
we discovered 19 emotional ones, which we consider to be
acceptable for such heuristic labeling.

Among all found presumably-neutral tweets, we randomly
select 250,000 to supplement the unlabaled data. An initial
classifier is also applied to these tweets and we exclude the
ones with detected emotions. All others appear as assigned
to the Neutral class. We name these data N. We also
extract some additional presumably-neutral tweets for testing
purposes as described below.

4) Preprocessing Steps: All the collected tweets are
first preprocessed. We replace each emoticon by a distinct
placeholder to ensure their correct extraction as separate
tokens. We also replace usernames with a placeholder and
remove stop-words. All the texts are converted to lower-case.
Punctuation marks are included as separate tokens. We also
delete hashtag symbols (#) from the text.

C. Validation and Test Sets

We construct a validation set to tune the meta-parameters
of the algorithm and the test set to evaluate the resultant
classifiers. We include both emotional tweets with hashtags

1The list of used hashtags is available at http://hci.epfl.ch/emotions-in-
olympic-tweets/galc-emotion-hashtags-file

TABLE I. DATASETS STATISTICS: PER-CATEGORY NUMBER OF TWEETS
DETECTED WITH EMOTIONAL HASHTAGS WITHIN SPORTS DOMAIN

Emotion category Full set Validation set Test set
Involvement/Interest 1669 200 200
Amusement/Laughter 195 50 100
Pride/Elation 22172 200 200
Happiness/Joy 3497 200 200
Pleasure/Enjoyment 364 150 150
Love/Tenderness 8278 200 200
Awe/Wonderment 251 100 100
Relief/Disburned 134 50 50
Surprise/Astonishment 1665 200 200
Nostalgia/Longing 567 200 200
Pity/Compassion 93 30 50
Sadness/Despair 10555 200 200
Worry/Fear 1296 200 200
Shame/Embarrassment 2317 200 200
Guilt/Remorse 276 100 100
Regret/Disappointment 2754 200 200
Envy/Jealousy 4390 200 200
Disgust/Repulsion 403 100 200
Contempt/Scorn 17 4 10
Anger/Irritation 2985 200 200
Neutral - 200 200
Total 63878 3184 3360

and presumably-neutral tweets. In the collected hashtag-
based dataset, we observe the large skewness of the emotion
distribution (see Table I). Some classes are present only in a
few tweets (as few as only 17 tweets for Contempt). As we
believe that an emotion classifier should be able to correctly
distinguish emotions for any given distribution, we exclude
the influence of the given skewness on the evaluation by
balancing the dataset between emotion classes. Thus, our
test dataset is balanced, with a similar number of tweets per
emotion, as is the dataset for validation.

We randomly chose a maximum of 200 tweets for each
class, including Neutral, to include in the test dataset (avoid-
ing tweets from the unlabeled data). We follow the same
process for the separate validation set. When there are fewer
than 400 tweets in a class, we split them between test and
validation sets, preserving round numbers (10, 50, 100 or
150) whenever possible. Overall, the test set has 3,360
tweets, and the validation set has 3,184 tweets. Table I
presents the distribution of emotions in both datasets.

D. Initial Classifiers

The initial classifier is the starting point of the learning
process in our semi-supervised framework. We consider
two domain-independent emotion classifiers: one lexicon of
explicit emotional terms (GALC) and one machine-learning
classifier trained on general data (MNB-Hash). We also take
one domain-specific classifier constructed over the small
annotated dataset using human computation (OlympLex).

1) GALC: The GALC is the domain-independent emo-
tion lexicon of the unigram stems explicitly expressing
an emotion, e.g. “happ*” for Happiness/Joy. It was de-
veloped along with GEW to automatically classify survey
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responses [9]. It contains 279 stemmed terms for 36 emotion
categories (covering all 20 GEW categories). To compute
the emotionality of a document using this lexicon, we sum
the number of terms found for each emotion (excluding the
negated ones) and normalize the obtained vector.

2) OlympLex: This domain-specific emotion lexicon was
obtained over the annotation of the tweets about sports
events in crowdsourcing settings. It contains the emotion
indicators selected from those tweets by the labelers as
well as related user-entered emotional expressions [39]. This
emotion lexicon allocates an emotionality for each of its
3193 terms (from unigrams to 5-grams). The average of
those emotionalities for the terms found within the tweet
text (excluding the ones negated or covered by other found
terms) is the emotionality of the tweet.

3) MNB-Hash: We also include the state-of-the-art
domain-independent classifier: we train a Multinomial Naïve
Bayes model over the large dataset of tweets collected with
the emotional hashtags. For this, we collected 5 million
English tweets with one of the emotional hashtags (the same
as used before for the test data labeling). After the selection
of tweets where hashtags appear in the end, the deletion of
retweets, short tweets and duplicates, we had 669,216 tweets
suitable for training the model. We then added the 250,000
neutral tweets extracted in our Olympic data (dataset N).
We used the unigrams and bigrams as features and applied
the same preprocessing steps to the text. This approach
achieved 57.7% accuracy in the 10-fold cross validation,
with a macro F1-score of 29.8%. For comparison, in similar
supervised settings other researchers achieved a macro F1-
score of 25.3% for 11 emotional states [6], and 53.5% for
7 emotions [5].

E. Tuning Meta-Parameters
We choose the optimal learning meta-parameters of our

method by tuning it over the validation dataset. This process
is separate for each initial classifier. To increase the compu-
tation speed, we used only 100,000 unlabeled tweets and
100,000 presumably-neutral tweets in these experiments.
The following parameters are varied:

• the length n of n-grams features: from 1 to 5;
• the minimum occurrence of n-grams K = 5 (fixed);
• the threshold τ of feature selection: 0 (no selection),

0.1, 0.2, 0.3, 0.7, and 1.0;
• α used in the operator A: 0.5, 0.7, 0.9, and 1.0;
• whether the annotation refinement is applied (with the

parameter α specified earlier);
• α0 of the multi-label selection for output: either α0 =α

(considering α as a general characteristic of the prob-
lem) or α0 = 1 (outputting only dominant emotions).

For each set of parameters, we recorded the perfor-
mance of the corresponding algorithm instance with macro-
precision, macro-recall and macro-F1 scores over the emo-
tion categories (excluding Neutral and Contempt, which was

under-represented in the dataset). The review of these results
revealed several possible behaviors of the algorithm. To
cover all of them, we apply three strategies to define the
best parameters. In the first setting, we maximize macro F1-
score, as it is usually considered to capture the best trade-
off between precision and recall (F1-based settings SF1). In
the second setting, we maximize macro-precision, because
it is harder to optimize than recall, which can be increased
by outputting more emotion labels for a tweet (Precision-
based settings SP). In the third setting, we maximize macro
F1-score while ensuring that precision is greater than recall
(Centered settings SC). This excludes the cases where the
maximum of F1-score is achieved with a low precision.

As a result, we identified the three best performing
learning parameters of our algorithms separately for each
initial classifier. All chosen parameters are described in the
Appendix, Table VI.

F. Validation of Improvement over the Initial Classifiers
We now present and discuss the test results of the tuned

instances of our semi-supervised method. For each of the
three initial classifiers (GALC, OlympLex, and MNB-Hash),
we run the learning process of the Balanced Weighted Voting
(BalancedWV) under three sets of meta-parameters chosen
from the validation experiments (SF1, SP, and SC). In this
process, all the 250,000 unlabeled tweets and 250,000 of
presumably-neutral tweets were accessible for learning. The
resultant classifiers were then evaluated on the test dataset.
Table II presents these results.

We again compute macro F1-score (F1), macro-precision
(P) and macro-recall (R). The performance of the initial clas-
sifiers without semi-supervised learning is reported as Initial.
For each semi-supervised algorithm, we also report how
significantly its performance metrics are different from the
ones of corresponding initial classifiers. We use Wilcoxon
signed rank test for this goal. An asterisk indicates a p-value
of 0.05 or lower, and two asterisks indicates a p-value of
0.01 or lower (The same notation is applied for all tables).
We also adapt a random baseline (Random) to estimate the
difficulty of the problem: it decides independently for each
emotion if it is present or not with the probability provided
by the emotion distribution in the dataset. Random has macro
F1-score of 4.8% for the test data, as estimated by 1000 runs.

The results show that under all three settings our semi-
supervised method improves the macro F1-score of the
initial classifiers. The increase is statistically significant in
all cases except one, with a minimum relative increase of
24.4%. The largest improvements (and thus highest F1-
scores) are achieved by the F1-based setting SF1: 26.8%
when started from MNB-Hash, 76.1% for OlympLex, and
105% for GALC (with the maximum achieved F1-score of
20.5% with MNB-Hash as a start). These findings confirm
our hypothesis that unlabeled data can be leveraged to im-
prove the performance of initial classifiers within a domain.
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TABLE II. VALIDATION OF PERFORMANCE IMPROVEMENT AFTER THE APPLICATION OF BALANCED WEIGHTED VOTING.
MACRO METRICS ARE REPORTED.

GALC OlympLex MNB-Hash
Algorithm Setting P R F1 P R F1 P R F1
Initial - 19.7 4.8 6.7 18.2 9.7 9.2 25.3 13.6 16.2

BWV-SF1 BalancedWV SF1 11.0** 19.2** 13.7** 14.5 20.3** 16.2** 17.0** 27.3** 20.5**
BWV-SP BalancedWV SP 16.3 6.8** 8.9* 16.8 10.6 12.1 22.8 19.4** 20.1*
BWV-SC BalancedWV SC 13.3 13.5** 13.1** 17.0 15.4 15.0** 22.2 19.8** 20.2*
Improvement of BWV-SC over Initial 95% 63% 25%
Improvement of BWV-SC over Random 182% 224% 337%

This improved performance can be explained for all set-
tings by the increase of macro-recall, statistically significant
in most cases. Unfortunately, it leads to the lower macro-
precision. This decrease is statistically significant only for
the SF1 setting, despite it having the highest F1-score on all
initial classifiers. At the same time, the recall increase for
this setting can be explained by outputting multiple labels for
a tweet (average is 2 for this setting, while around 1 for other
two settings). Thus, the F1-based setting can be preferred
only if lower precision is not an issue for the application.

The decrease in macro-precision is statistically insignifi-
cant for two other settings, SP and SC (p-value > 0.05). Al-
though their results are comparable when started from MNB-
Hash (p-value for F1 is 0.768), from GALC or OlympLex,
the F1-score (and recall) of SP is lower than that of SC (p-
value for F1 with OlympLex is 0.029). Therefore, we see the
Centered settings SC as the most suitable for real applications
when both recall and precision are of equal importance.

Overall, our evaluation indicates that with the described
semi-supervised method we are able to make the initial
classifiers more suitable for an application within a cho-
sen domain. This is achieved by correctly detecting more
emotional documents (increased recall), while maintaining
a comparable level of precision in most cases.

G. Validation of Rebalancing Process
The suggested method, Balanced Weighted Voting, orig-

inates from Weighted Voting, which does not introduce the
rebalancing coefficients ci (as described in Section III). We
test what effect the rebalancing process brings. We first
run the equivalent validation experiments to find the best
parameters for Weighted Voting. Then, we evaluate the
obtained classifiers for the same three parameter settings on
the test dataset, starting from the three initial classifiers. We
present the test results of Weighted Voting when started from
GALC in Table III. The performance patterns are similar for
the other two initial classifiers.

We observe that without rebalancing, Weighted Voting
was not able even to increase the F1-score of the initial clas-
sifier. While the precision remains comparable (p-value >
0.05), the recall decreases significantly (p-value = 0.001 for
SF1). This means that such an algorithm without rebalancing
is not suitable for our semi-supervised learning, at least not
under the same framework.

H. Comparison with Other Methods

We compare our Balanced Weighed Voting classifier with
the other two classifiers imported from related subject areas
of text classification and sentiment analysis.

1) Naïve Bayes: We consider the machine-learning clas-
sifier most widely used for text classification tasks—
Multinomial Naïve Bayes. As tweets are short, we interpret
the presence of the terms as features, instead of their
frequency. While the original classifier was designed for
the hard classification requiring label input, we adapted it
to our settings of soft classification with emotionality input
by following the process described in [34]. The conditional
probability of the term t given the emotion class is computed
as:

P(t|ei) =

1+ ∑
d:t∈d

pi(d)

|V |+ ∑
s∈V

∑
d:s∈d

pi(d)
, (3)

where |V | is the size of the feature vocabulary. The classifi-
cation procedure is unchanged: we output the class(es) that
have the highest probability conditioned on the tweet text
P(ei|d). However, we consider the found vector P(ei|d) as
the emotionality, and output the multi-label using the α0-
based operator A.

2) Pointwise-Mutual Information Classifier: The PMI-
based classifier is used in polarity and emotion classifica-
tion within semi-supervised settings [21], [26]. It splits the
problem into |E| independent binary classification tasks: a
classifier for i th emotion decides if it is present (class e+i ) or
not (e−i ). For learning, we transform the given emotionality
p̄ of each document into the multi-label format, using the
operator A with the parameter α (the same as the annotation

TABLE III. SHOWING THE IMPROVEMENT OF REBALANCING USED IN
BALANCED WEIGHTED VOTING, WHEN STARTED FROM GALC.

MACRO METRICS ARE REPORTED.

GALC
Algorithm Setting P R F1
Initial - 19.7 4.8 6.7

WV-SF1 Weighted Voting SF1 20.7 3.6** 5.3**
WV-SP Weighted Voting SP 19.3 2.8** 4.4**
WV-SC Weighted Voting SC 20.1 3.4** 5.1**
BWV-SC BalancedWV SC 13.3 13.5** 13.1**
Improvement of BWV-SC over WV-SF1 147%
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TABLE IV. COMPARING BALANCED WEIGHTED VOTING WITH OTHER ALGORITHMS. MACRO METRICS ARE REPORTED.

GALC OlympLex MNB-Hash
Algorithm Setting P R F1 P R F1 P R F1
Initial - 19.7 4.8 6.7 18.2 9.7 9.2 25.3 13.6 16.2

NB-SF1(C) NaïveBayes SF1(C) 14.5 12.7* 10.1 16.9 16.1** 11.0 28.4 15.1 15.8
NB-SP NaïveBayes SP 15.9 6.5 7.6 16.5 10.9 8.2* 27.1 14.7 15.4
PMI-SF1 PMI-based SF1 6.8** 37.0** 11.1** 9.2** 30.7** 13.3* 12.6** 27.1** 16.3
PMI-SP PMI-based SP 8.1** 29.4** 10.7* 8.6** 26.1** 10.6 16.1* 18.3** 14.9
PMI-SC PMI-based SC 6.9** 41.3** 11.1* 9.4** 28.9** 13.3* 11.7** 26.2** 15.1
BWV-SC BalancedWV SC 13.3 13.5** 13.1** 17.0 15.4 15.0** 22.2 19.8** 20.2*
Improvement BWV-SC vs. NB-SF1(C) 29% 37% 28%
Improvement BWV-SC vs. PMI-SF1 18% 13% 24%

refinement parameter). The i th binary classifier is learned
by computing the strength of association (SoA) of each
term with the i th emotion as the PMI difference towards
the e+i and e−i classes. The formula (1) is used again, but
while considering emotion presence e+i as a positive class
and emotion absence e−i as a negative. We also add an
extra parameter θ for this algorithm. It is used for feature
selection at a per-category level: the i th classifier takes only
those features that have a strength of association above
this threshold, i.e. |SoA(t, ei)| ≥ θ . Then, the emotion ei
is detected as present in a tweet if the sum of the scores
SoA(t,ei) of the feature terms found in the text is positive.

3) Test Methodology: Both of these classifiers are taken
as supervised learners within the semi-supervised framework
(see Figure 1). For each, we perform validation experiments
with the same validation set, parameter space, and the
unlabeled data, as for Balanced Weighted Voting. We only
add an extra tuning of the parameter θ for the PMI-based
classifier, with evaluated possible values being 0, 0.1, 0.2,
0.3, 0.7, and 1.0. Similarly, we choose three sets of meta-
parameters (SF1 for F1-based, SP for Precision-based, and SC
for Centered settings). However, SC coincides with SF1 for
the NaïveBayes classifier—we name them SF1(C). We then
learn the classifiers using the full data (250,000 of unlabeled
tweet and 250,000 of pseudo-labeled ones). The results of
the learned classifiers on the test dataset are shown in Table
IV. We again present macro-Precision (P), macro-Recall (R)
and macro-F1 score (F1) for evaluation.

4) Comparative Results: First, the results show that both
baseline algorithms are also able to improve the F1-score
of an initial classifier (under some settings). However, these
improvements, if present, are statistically significant only
for the PMI-based classifier. It achieves this high F1-score
by optimizing recall with a large sacrifice of precision (with
statistically significant changes in all settings). Such a recall-
favoring behavior is a result of making an independent
decision for each emotion, which makes it prone to output
more emotion labels per tweet (4.45 in average for all cases).
The Naïve Bayes classifier has a different behavior— in all
cases, its macro-precision is higher than macro-recall, and
in case of MNB-Hash it is even higher than that of the
initial classifier (it is not statistically significant, though).

Yet, its F1-scores are mostly comparable to those of the
initial classifiers (no significant difference at significance
level 0.05). For both baseline algorithms, the highest F1-
scores are achieved with the F1-based setting SF1 and when
started from MNB-Hash.

In any case, the F1-scores of Balanced Weighted Voting
with Centered setting SC are higher for all initial classifiers.
And this result is achieved with lower average difference
between macro-precision and macro-recall (1.4% versus the
minimal 5.3% for NB-SF1(C)).

We further compare the test results of the best-performing
settings for all classifiers at per-category level (Table V). We
take MNB-Hash as an initial classifier, because the highest
F1-scores are achieved with it. Its per-category performance
is also presented in order to clarify the starting point of
improvement. The following best-performing settings are
used in comparison: SC for Balanced Weighted Voting,
SF1(C) for Naïve Bayes, and SF1 for the PMI-based classifier.

We discover that BWV-SC not only achieves the highest
macro F1-score, but also has the highest F1-scores for most
of the categories (for 10 out of 20 emotions, while only for
4 for NB-SF1(C)). For those categories on which it has F1-
score lower than of another semi-supervised classifier, the
absolute difference to the highest is no greater than 3.4%. In
addition, BWV-SC has a smaller average difference between
precision and recall than either NB-SF1(C) or PMI-SF1 (6.1%
vs. 16.7% or 15.4%). This means that its performance is also
more stable in terms of the balance between precision and
recall among emotion categories.

The per-category comparison also shows that the low
macro F1-score of NB-SF1(C) is mostly due to its poor
results (F1-score < 5%) on those categories that have been
found with an insufficient recall by the initial classifier
(R ≥ 6%). At the same time, both BWV-SC and PMI-SF1 can
overcome this problem at least for some of these categories
(for example, while MNB-Hash initially had a F1-score of
0% on Amusement, BWV-SC has 17.1%).

In comparison with two other learning algorithms, Naïve
Bayes and PMI-based, our method, Balanced Weighted
Voting, achieves better test performance not only in terms
of macro F1-score, but also in terms of the balance between
precision and recall both at macro and per-category levels.
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TABLE V. PER-CATEGORY RESULTS OF THE CLASSIFIERS, WHEN STARTED FROM MNB-HASH.

Initial: MNB-Hash BWV-SSSCCC NB-SSSFFF111(((CCC))) PMI-SSSFFF111
Category P R F1 P R F1 P R F1 P R F1
Involvement / Interest 37.7 10.0 15.8 25.0 15.5 19.1 41.1 11.5 18.0 9.7 10.0 9.8
Amusement / Laughter 0.0 0.0 0.0 20.0 15.0 17.1 100.0 1.0 2.0 4.5 7.0 5.5
Pride / Elation 24.7 31.5 27.7 31.5 37.0 34.0 30.9 41.0 35.3 17.0 44.0 24.5
Happiness / Joy 35.9 23.5 28.4 29.8 26.5 28.0 32.2 28.0 29.9 25.0 40.0 30.8
Pleasure / Enjoyment 0.0 0.0 0.0 8.6 4.7 6.1 - 0.0 - 11.6 6.7 8.5
Love / Tenderness 24.1 19.5 21.5 23.7 11.5 15.5 20.8 16.5 18.4 13.7 20.5 16.4
Awe / Wonderment 0.0 0.0 0.0 9.1 8.0 8.5 - 0.0 - 8.0 6.0 6.9
Relief / Disburned 28.6 8.0 12.5 11.3 30.0 16.4 30.0 6.0 10.0 7.5 24.0 11.4
Surprise / Astonishment 30.8 2.0 3.8 27.1 13.0 17.6 50.0 1.0 2.0 12.8 11.5 12.1
Nostalgia / Longing 50.9 27.0 35.3 35.9 44.5 39.7 43.2 27.0 33.2 19.4 33.5 24.5
Pity / Compassion 0.0 0.0 0.0 1.7 4.0 2.4 - 0.0 - 0.0 0.0 -
Sadness / Despair 26.5 35.0 30.2 29.6 29.5 29.6 26.1 44.5 32.9 14.7 64.0 23.9
Worry / Fear 37.4 20.0 26.1 20.5 16.5 18.3 23.9 16.0 19.2 12.4 24.0 16.4
Shame / Embarrassment 29.1 16.0 20.6 22.2 17.5 19.6 22.8 22.0 22.4 14.6 41.5 21.6
Guilt / Remorse 37.5 6.0 10.3 20.8 16.0 18.1 0.0 0.0 - 9.6 23.0 13.5
Regret / Disappointment 19.3 10.5 13.6 24.2 16.0 19.3 17.5 11.0 13.5 14.2 43.5 21.5
Envy / Jealousy 32.6 22.0 26.3 32.3 27.0 29.4 35.5 30.5 32.8 17.0 41.0 24.0
Disgust / Repulsion 37.5 6.0 10.3 18.2 17.5 17.9 41.7 2.5 4.7 12.9 19.0 15.4
Contempt / Scorn 0.0 0.0 0.0 0.0 0.0 - - 0.0 - - 0.0 -
Anger / Irritation 28.6 22.0 24.9 30.2 26.0 28.0 23.9 28.0 25.8 14.2 55.0 22.5
Neutral 11.0 93.5 19.7 17.6 46.5 25.5 11.9 83.5 20.9 10.6 61.0 18.0
Macro (of emotions) 25.3 13.6 16.2 22.2 19.8 20.2 28.4 15.1 15.8 12.6 27.1 16.3

V. DISCUSSION AND FUTURE WORK

Our experiments showed that semi-supervised approaches
can achieve substantial improvements over the initial classi-
fiers. The best achieved performance is a 20.5% macro F1-
score, which reflects the difficulty of the considered multi-
category emotion recognition problem: its fine-granularity
combined with subjectivity of classification, lack of an-
notated data and low random baseline. While the larger
number of emotions (20 against the 6 or 8 basic emotions
more commonly used in emotion recognition literature [4],
[21]) makes the classification more difficult, it brings the
opportunity to select those emotions that are more suitable
for the domain or application. One future research direction
is to investigate how the choice of categories affects the
results. We expect that we can achieve higher recognition
quality with emotions that are more separable and that have
many descriptive expressions.

Another direction for future work is to determine whether
our results can be generalized for other domains (e.g. the
reactions to other public events such as awards or elections).
It would be also interesting to study if the discovered ben-
efits of semi-supervised learning hold for larger or smaller
amounts of unlabeled data, and whether better performance
can be achieved by other feature selection methods. It is
also possible that a hierarchical approach to the classification
problem [46] could bring further improvements.

VI. CONCLUSION

With this paper, we believe we are the first to study a
semi-supervised learning method for multi-category emotion
recognition in tweets from a specific domain. We describe a
method that, starting from an existent but limited initial clas-

sifier (e.g. a general-purpose emotion lexicon), constructs a
novel classifier that is able to correctly detect more domain-
specific emotional tweets and thus is more suitable to apply
within the chosen domain. Using sports tweets, we validate
this approach experimentally on the three different initial
classifiers. In all three cases, the proposed semi-supervised
method, Balanced Weighted Voting, improves the macro F1-
score, with a relative increase between 24% and 105%. Our
further experiments suggest that rebalancing the initially
labeled data prior to training the classifier is an essential
step for the success of our method. Finally, in comparison
with other two learning algorithms (Naïve Bayes and PMI-
based), Balanced Weighted Voting achieves the highest final
macro F1-score, with consistently-high F1-scores throughout
the emotion categories and with less difference between
precision and recall both at macro and per-category levels.
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APPENDIX

TABLE VI. THE PARAMETERS OF THE ALGORITHMS CHOSEN UNDER
DIFFERENT SETTINGS

Algorithm Initial Classifier nnn τττ ααα ααα000 Extra
BWV-SF1 GALC 5 0.1 0.7 0.7
BWV-SP GALC 1 1.0 0.7 1.0
BWV-SC GALC 5 0.7 0.9 0.9
BWV-SF1 OlympLex 2 0.1 - 0.9
BWV-SP OlympLex 1 1.0 0.5 1.0
BWV-SC OlympLex 2 0.3 - 1.0
BWV-SF1 MNB-Hash 2 0.3 - 0.7
BWV-SP MNB-Hash 2 0.1 - 1.0
BWV-SC MNB-Hash 2 0.3 - 1.0
NB-SF1 GALC 3 0.1 - 0.5
NB-SP GALC 1 0.3 0.9 0.9
NB-SF1 OlympLex 3 0.2 - 0.5
NB-SP OlympLex 1 0.1 0.9 0.9
NB-SF1 MNB-Hash 3 0.1 - 0.9
NB-SP MNB-Hash 5 0.1 1.0 1.0
PMI-SF1 GALC 1 0.7 0.7 0.7 θ = 0.3
PMI-SP GALC 4 0.7 - 0.7 θ = 1.0
PMI-SC GALC 1 0.1 - 0.5 θ = 0.7
PMI-SF1 OlympLex 1 0.7 0.5 0.5 θ = 0.7
PMI-SP OlympLex 2 0.2 0.9 0.9 θ = 0.7
PMI-SC OlympLex 1 0.2 - 0.7 θ = 1.0
PMI-SF1 MNB-Hash 2 1.0 0.5 0.5 θ = 0.7
PMI-SP MNB-Hash 2 0.1 0.7 0.7 θ = 1.0
PMI-SC MNB-Hash 5 1.0 0.5 0.5 θ = 0.3
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