
OntoSeg: a Novel Approach to Text Segmentation
using Ontological Similarity

Mostafa Bayomi, Killian Levacher, M.Rami Ghorab, Séamus Lawless,
Centre for Global Intelligent Content, Knowledge and Data Engineering Group

School of Computer Science and Statistics, Trinity College Dublin, Ireland
{bayomim, killian.levacher, rami.ghorab, seamus.lawless}@scss.tcd.ie

Abstract— Text segmentation (TS) aims at dividing long text

into coherent segments which reflect the subtopic structure of the
text. It is beneficial to many natural language processing tasks,
such as Information Retrieval (IR) and document summarisation.
Current approaches to text segmentation are similar in that they
all use word-frequency metrics to measure the similarity between
two regions of text, so that a document is segmented based on the
lexical cohesion between its words. Various NLP tasks are now
moving towards the semantic web and ontologies, such as
ontology-based IR systems, to capture the conceptualizations
associated with user needs and contents. Text segmentation based
on lexical cohesion between words is hence not sufficient
anymore for such tasks. This paper proposes OntoSeg, a novel
approach to text segmentation based on the ontological similarity
between text blocks. The proposed method uses ontological
similarity to explore conceptual relations between text segments
and a Hierarchical Agglomerative Clustering (HAC) algorithm to
represent the text as a tree-like hierarchy that is conceptually
structured. The rich structure of the created tree further allows
the segmentation of text in a linear fashion at various levels of
granularity. The proposed method was evaluated on a well-
known dataset, and the results show that using ontological
similarity in text segmentation is very promising. Also we
enhance the proposed method by combining ontological
similarity with lexical similarity and the results show an
enhancement of the segmentation quality.

Keywords—Text Segmentation; Ontological similarity; Lexical
Cohesion; Vector Space Model

I. INTRODUCTION
Text segmentation is the process of placing boundaries

within text to create segments according to some task-
dependent criterion. An example of text segmentation is
topical segmentation, which aims to segment a text according
to the subjective definition of what constitutes a topic. Text
segmentation algorithms are widely used as an essential step
in many Natural Language Processing (NLP) tasks, such as
Information Retrieval [1], document summarisation [2] and
Automatic generation of E-Learning Courses [3]. In
Information Retrieval, a document is segmented into distinct
topics and only the topical segments relevant to the user’s
needs are retrieved. Segmentation not only provides more
accurate information to the user, but also reduces the user’s
burden to read the whole document. In document
summarisation, a document is segmented into topics and then
each topic is summarized independently. This process

guarantees that the final summary covers all the key topics in
the document.

There are different approaches to text segmentation in the
literature. Some approaches segment text linearly [4] and
others segment it hierarchically[5]. TextTiling, for example, is
a well-known linear text segmentation method proposed by
Hearst [6]. TextTiling uses a sliding window and follows the
peaks and valleys of the similarity curve to determine where to
segment a text.

Methods for text segmentation are similar in that they all
use word frequency metrics to measure the similarity between
two regions of text so that a document is segmented at the
points where the connections between the regions of words are
the weakest, which means that the obtained segments from
these approaches are segmented based on the lexical
relationship between words in the text. As mentioned before,
text segmentation is an essential step for many NLP tasks;
these NLP tasks are moving now towards the Semantic Web
and the use of ontologies. In Information Retrieval systems,
for example, that are based on keywords provide limited
capabilities to capture the conceptualizations associated with
user needs and contents. In order to solve these limitations, the
idea of semantic searches, based on the conceptual meaning of
text, has been the focus of a wide body of research and many
ontology-based IR systems have been developed [7]. In such
systems, whereby text is segmented based solely on the
relation between words, such method represents a limitation to
capture the conceptualizations associated with user needs.
Hence, a need for segmenting and representing text based on
the ontological relation between its constituents arises.

 In this paper, we propose OntoSeg, a novel approach to
text segmentation based on the ontological similarity between
text blocks. In contrast to traditional text segmentation
approaches which used lexical-based similarity between words,
we use ontology-based similarity to assess the relatedness
between text blocks. A Hierarchical Agglomerative Clustering
(HAC) approach is then applied to cluster similar blocks
together. The output is a hierarchy that is constructed based on
how text blocks (one or more sentence) are conceptually
related to each other. Our experiments demonstrate that
segmenting text based on the ontological similarity is
applicable with a low error rate. This research has three
contributions:

1- Segmenting text based on the ontological similarity
between text blocks (as opposed to lexical similarity);

2015 IEEE 15th International Conference on Data Mining Workshops

978-1-4673-8493-3/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDMW.2015.6

1274

this method is intended for use in ontology-based NLP
tasks.

2- A method aimed at enhancing the quality of segments
produced when no ontological relation between text
blocks exists is also presented

3- Evaluating the quality of text segmentation using the
ontology-based similarity.

II. RELATED WORK
Text segmentation tasks have been categorised from different
points of view as: 1) Content-based and Discourse-based, 2)
Supervised and Unsupervised, 3) Linear and Hierarchical, and
4) Borderline sentences detection methods which are divided
into three main categories: a) Similarity based methods, b)
Graphical methods, and 3) Lexical chain based methods.

A. Content-based and Discourse-based
Content-based approaches focus on the story content and

resolve the segmentation problem by relying on some measure
of the difference in word usage on the two sides of a potential
boundary: the larger the difference, the more indicative of a
boundary. A well-known content-based approach example is
TextTiling proposed by Hearst [6]. TextTiling is content-based
text segmentation algorithm that uses a sliding window
approach to segment text. The calculation is accomplished by
two vectors containing the number of occurring terms of each
block. The similarities between adjacent blocks within the text
are computed to detect topic changes. The computed
similarities are smoothed, and used to identify topic
boundaries by a cutoff function.

On the other hand, the discourse-based techniques focus on
story structure or discourse. These approaches make use of
prosodic features such as pause duration as well as lexical
features such as the presence of certain cue phrases that tend
to appear near the segment boundaries. An example of
discourse-based approaches is the Hidden Markov Model
(HMM) segmentation method [8] that models “marker
words”, or words which predict a topic change.

B. Supervised and Unsupervised.
A supervised text segmentation approach called divSeg was

introduced by Song et al. [9], where they apply an iterative
approach that splits text at its weakest point in terms of the
lexical connectivity strength between two adjacent parts. After
they found the weakest point in the text, their approach
produces a deep and narrow binary tree. The tree is then
flattened into a broad and shallow hierarchy through supervised
learning of a document set or explicit input of how a text
should be segmented.

On the other hand, Eisenstein and Barzilay[10] proposed a
Bayesian approach to unsupervised topic segmentation. They
showed that lexical cohesion between text segments can be
placed in a Bayesian context by modelling the words in each
topic segment. TextTiling [6] and C99 [11] are also considered
unsupervised linear topic segmentation algorithms.

C. Linear and Hierarchical
If we look at the text segmentation from the text

representation perspective, we can divide its segmentation
approaches into linear and hierarchical. Linear text
segmentation deals with the sequential analysis of topical
changes where segments are non-overlapping and sequential.
An early linear text segmentation algorithm was the TextTiling
approach introduced by Hearst [12] in 1997. Galley et al. [13]
proposed LcSeg, a TextTiling-based algorithm that uses tf-idf
term weights, which improves text segmentation results.
Another well-known linear text segmentation algorithm is C99
introduced by Choi [11]. C99 segments a text by combining a
rank matrix, transformed from the sentence-similarity matrix,
and divisive clustering. Choi et al. [14] introduced another
enhanced version of C99 by applying Latent concept
modelling to the similarity metric. They showed that using a
Latent Semantic Analysis (LSA) based metric could improve
the segmentation accuracy. Utiyama and Isahara [15]
introduced probabilistic approaches using Dynamic
Programming (DP) called U00. DP is used in text
segmentation to represent each possible segment (e.g. every
sentence boundary) as an edge providing a cost function that
penalizes common vocabulary across segment boundaries.
Misra et al. [16] used Latent Dirichlet Allocation (LDA) topic
model to linearly segment a text into semantically coherent
segments.

Hierarchical text segmentation concerns itself with finding
more fine grained subtopic structures in texts. The first
hierarchical algorithm was proposed by Yaari [5]. Yaari used
paragraphs as an elementary units for his algorithm and he
measured the cohesion between them using cosine similarity.
An agglomerative clustering approach is then applied to
induce a dendrogram over paragraphs; the dendrogram is
subsequently transformed into a hierarchical segmentation.

D. Borderline sentences detection methods
There are three main approaches to detect borderline

sentences within text [1]:
1) Similarity based methods: represent text blocks as

vectors and then measure the proximity by using (most of the
time) the cosine of the angle between these vectors. The C99
algorithm [11] for example uses a similarity matrix to generate
a local classification of sentences and isolate topical segments.

2) Graphical methods: represent terms frequencies and
use these representations to identify topical segments (which
are dense dot clouds on the graphic). The DotPlotting
algorithm [17] is the most common example of the use of a
graphical approach of text segmentation.

3) Lexical chains based methods: the notion of lexical
chains was first proposed by Morris and Hirst [18] to chain
semantically related words together via a thesaurus. A chain
links multiple occurrences of a term in the document and is
considered broken when there are too much sentences between
two occurrences of a term. Segmenter [19] uses this method
for text segmentation with a subtle adjustment as it determines
the number of necessary sentences to break a chain in function
of the syntactical category of the term.

1275

All the aforementioned approaches have focused on the
similarity (or dissimilarity) between text blocks based on the
words that constitute the text. Even the approaches that relied
on semantic analysis only applied a shallow semantic parsing
of text to discover different kinds of relationships between two
words, including synonymy (the same meaning) and
hyponymy (where one word is a more specific instance of
another). Our research therefore focuses on semantically
mining text and applying deep semantic analysis of text to
discover the relation between its constituents.

In our approach we measure the similarity between text
blocks based on the ontology-based semantic similarity. The
ontology-based semantic similarity relates to computing the
similarity between conceptually similar but not necessarily
lexically similar terms. Semantic similarity has been widely
used in many research fields such as: (1) Information
Retrieval: to improve accuracy of current Information
Retrieval techniques and semantic indexing [7]. (2) Natural
Language Processing tasks: such as word sense
disambiguation [20], synonym detection [21], sentiment
analysis [22], analogical reasoning for sentiment analysis [23]
or automatic spelling error detection and correction [24].

Ontology-based similarity can be classified into three main
approaches: 1) Edge-counting approaches, 2) Feature-based
approaches, and 3) Information Content (IC) based
approaches. In this research, we rely on an Edge-counting
approach proposed by Wu and Palmer [25] as its performance
is deemed better than other methods [21].

III. SEGMENTATION BY HIERARCHICAL AGGLOMERATIVE
CLUSTERING

The segmentation process proposed in this paper consists of
three phases: 1) Semantic annotation, 2) Calculating similarity
between text blocks (sentences or paragraphs) and 3)
Hierarchical Agglomerative Clustering (HAC).
A. Semantic annotation:

In this phase, the text is semantically annotated using a
named entity recognition algorithm and text entities are
extracted. Each entity is then mapped to its class or classes in
an ontology and the text is represented as a sentence-based
vector-space. This vector space is then used as an input to the
following phase. Several ontologies exist nowadays, some of
them are domain-specific ontologies (such as the MeSH1
ontology of medical and biomedical terms), while others are
cross-domain (such as DBpedia2). As we are not focusing on a
specific domain, in this research we use DBpedia ontology as
the underlying knowledge base, as opposed to a domain-
specific alternative. DBpedia Spotlight3 is used as the named
entity recognition system to extract entities from the targeted
text. DBpedia Spotlight is a tool for automatically annotating
mentions of DBpedia resources in text, providing a solution for
linking unstructured information sources to the Linked Open
Data cloud through DBpedia. DBpedia Spotlight recognizes
entities that have been mentioned in text and subsequently
matches these entities to their classes in DBpedia ontology.

1 http://www.nlm.nih.gov/mesh
2 http://dbpedia.org/
3 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki

For each annotated entity in the text, the classes that match this
entity are extracted. For example, Barack Obama, as an entity,
matches with DBpedia classes: [“Person”, “Agent”,
“Officeholder”]. Since the elementary blocks for the proposed
approach are sentences, each sentence in the text is represented
as a vector of entities, and each entity is represented by a set of
classes that match the entity from DBpedia. A sentence-based
vector-space is built and a similarity between its adjacent
vectors is measured as discussed in the following subsection.

B. Similarity Computation:
The key idea proposed in this research consists in treating

the segmentation of text based on the ontological similarity
between its blocks. A text block is the elementary unit to the
segmentation algorithm, which could be one sentence or
multiple sentences (paragraphs).

We measure the similarity between text units based on two
similarity measures: (1) Ontological similarity and (2) Lexical
similarity.
1) Ontological similarity:
To measure the ontological similarity between two text blocks,
we measure the similarity between the classes of their entities
using the is-a relation. In ontology structure, the is-a relations
group the classes according to how they are conceptually
related to each other. Given a pair of two classes, c1 and c2, a
well-known method with intuitive explicitness for assessing
their similarity is to calculate the distance between these
classes in an ontology hierarchy; the shorter the distance, the
higher the similarity. In the case that multiple paths between
the nodes exist, the shortest distance of all paths is used.

Several measures have been developed for measuring
similarity between two concepts in a taxonomy. Out of these,
we choose the measure proposed by Wu and Palmer [25]
because it has shown performance improvements over other
methods [21]. The principle behind Wu and Palmer’s
similarity computation is based on the edge-counting method,
whereby the similarity of two concepts is defined by how
closely they are related in the hierarchy, i.e., their structural
relations. Given two concepts c1 and c2, the conceptual
similarity between them is:

 ConSim(c1, c2) = 2*N/(N1+N2) (1)

where N is the distance between the closest common
ancestor (CS) of c1 and c2 and the taxonomy root, and N1 and
N2 are the distances between the taxonomy root on one hand
and c1 and c2 on the other hand respectively.

The similarity between two entities can be defined as a
summation of weighted similarities between pairs of classes in
each of the entities. Given two entities E1 and E2, the
similarity between them is:

 (2)
where m and n are the two sets of classes that E1 and E2

have respectively.
Equation (2) calculates the similarity between two entities,

where each entity belongs to one or more classes. For

1276

example, Barack Obama as an entity is mapped to three
DBpedia classes: [“Person”, “Agent”, “Officeholder”], and
George Bush also is mapped to three DBpedia classes:
[“Person”, “Agent”, and “Officeholder”]. Hence, although
the two entities are not lexically similar, or even close to each
other, they are deemed ontologically similar. This is the idea
behind the ontological similarity: it measures the similarity
between entities according to the conceptual characteristics
which they share. As another example of how ontological
similarity differentiates between entities, consider Michael
Jackson as an entity that is mapped to four DBpedia classes:
[“Person”, “Agent”, “Artist”, “MusicalArtist”]. Intuitively,
the two entities Barack Obama and George Bush are more
ontologically similar to each other than either of them is to
Michael Jackson.

On a text-block level, the similarity between two blocks can
be defined as a summation of weighted similarities between
pairs of entities in each of the units.

Given two text blocks B1 and B2, which have a set of
entities a and b respectively, the similarity between B1 and B2
is:

 (3)
2) Lexical similarity:

Lexical similarity has been used widely in the literature in
text segmentation [6], [11], and as its name suggests, it splits
text into segments that are lexically coherent. Lexical cohesion
refers to the connectivity between two portions of text in terms
of word relationships.

Although text blocks might share ontological similarities
between each other, it may be the case that ontological
similarity alone is not sufficient to measure how text blocks
are coherent with each other. This is due to the following
reasons:

1- Text blocks might not contain any entities at all.
2- The entity extraction algorithm may not discover

some entities in the text block.
3- The extracted entities from a text block may not be

sufficient to reflect the similarity between text blocks.
4- The used ontology may not cover all the text

mentions.
Thus, the lexical overlap between text blocks should be part

of the overall similarity measure. As a result, we enrich our
similarity measure by obtaining the lexical similarity between
text blocks and combine it with the ontological similarity. To
measure the lexical similarity between text blocks, first,
stopwords are removed from the text as they are generally
assumed to be of less, or no, informational value. Then the
remaining words are stemmed and each block is represented by
a lexical frequency vector. A lexical vector cosine similarity is
calculated. It is defined as the cosine of the angle between two
vectors v and w such that:

 (4)

C. Hierarchical Agglomerative Clustering (HAC)
Hierarchical clustering algorithms have been studied

extensively in the clustering literature [26]. The general
concept of agglomerative clustering is to successively merge
documents into clusters based on their similarity with one
another. The agglomerative clustering technique could be
transferred from document level into text level, where the
clustering process is done between text blocks, within a
document (as opposed to across whole documents) [5]. When
applying Hierarchical Agglomerative Clustering on text
blocks the algorithm successively agglomerates blocks that are
coherent to each other, thus forming a text structure.

The idea behind using HAC in text segmentation is that it is
a bottom-up clustering approach, which means that it starts
from the smallest chunks and then builds the text hierarchy by
merging text blocks (clusters) based on how near or similar
they are to each other. In contrast, the top-down (divisive)
clustering approach starts from the full document and then
divides the text into smaller blocks based on how far (i.e. how
different) they are from each other. Hence, the output of the
bottom-up approach can be regarded as hierarchically coherent
tree. Thus, the method of Hierarchical Agglomerative
Clustering for text is useful to support a variety of search
methods because it naturally converts text into a tree-like
hierarchy and provides different levels of granularity for the
underlying content; this can then easily be leveraged for the
search process.

The algorithm successively clusters “coherent” segments
based on the accumulation between the ontological and lexical
similarity scores between text blocks, which guarantees the
ontological and lexical cohesion between agglomerated
segments. The HAC algorithm for text segmentation, based on
blocks as the elementary segments, is shown in Fig. 1.

Fig. 1. Hierarchical Agglomerative Clustering of text segments

Conceptually, the process of agglomerating blocks into
successively higher levels of clusters creates a cluster hierarchy
(dendrogram) for which the leaf nodes correspond to individual
blocks, and the internal nodes correspond to the merged groups

1277

of clusters. When two groups are merged, a new node is
created in this tree corresponding to this larger merged group.
The two children of this node correspond to the two groups of
blocks which have been merged to it. Fig. 2 shows the resulted
dendrogram from the algorithm for a sample text.

D. From hierarchical into linear representation
The hierarchical text segmentation produces a tree that can

be used as a visual illustration of the underlying hierarchical
structure of a document. Fig. 3 depicts a tree representation of
a sample text of 10 sentences. The benefit of this tree is that it
represents different levels of granularity of the document,
which in turn means that the document can be segmented into
different segmentation levels. This is a powerful criterion in
the hierarchical representation of text. In contrast to linear
representation, in each level of the structure (tree)
segmentation with different levels of details could be obtained
and can be usefully applied to many other tasks’ needs.

In order to convert a hierarchical representation into a linear
representation a threshold corresponding to the number of the
segments needed is set and the level that contains the
corresponding number of nodes in the tree is extracted. If this
number is not represented in one of the tree levels, a flattening
process is applied to the largest nodes. For example, suppose
that the specified number is 10 segments, and in one of the
tree levels the number of nodes (segments) is seven nodes. As
now we need three more segments, for the largest three nodes

Fig. 2. Sentences dendrogram of a sample text.

Fig. 3 A tree representation for a text from 10 sentences

(large in number of blocks) they are flattened by obtaining the
two subsequent nodes that constitute this large node, i.e. we go
down a level in the tree for those three large segments. This
method of flattening the tree guarantees that the coherency
between the obtained segments is preserved.

IV. EXPERIMENTAL SETUP
The output from the proposed approach is a tree that

represents the text hierarchy. As depicted in Fig 2. each level in
the tree represents a level of granularity for the text where each
node, in that level, represents a segment that contains coherent
blocks. As mentioned before, a linear representation of text can
be obtained from such a tree, which means that our method can
be evaluated as a linear text segmentation method. In this
experiment, we evaluated the efficiency of our approach on
Choi’s dataset4 [11]. This dataset has been widely used in
linear text segmentation evaluation [27][28]. The dataset
consists of documents made up of ten concatenated text
segments. Each segment consists of the first n sentences of a
randomly selected document from the Brown Corpus. The
dataset is divided into four subsets and are listed in the table
below. There are a total of 700 text documents.

TABLE I. TEST DATASET STATISTICS

Range of n 3-11 3-5 6-8 9-11

samples 400 100 100 100

Each document in the dataset is processed and two vector

space models are generated: the ontological and the lexical.
Since the elementary text blocks to our method consists of
sentences, each sentence in the ontological vector space is
represented as a vector of sets of DBpedia classes where each
set represents an entity that is extracted from the sentence.
These sets of classes are used to measure the ontological
similarity between sentence vectors according to (1), (2), and
(3). To build the lexical vector space, first the stopwords are
removed from the text and then the remaining terms are
stemmed; after this, each sentence is subsequently represented
as a term-frequency vector. The lexical similarity between
adjacent vectors is then determined by calculating the cosine
similarity between them (4).

A HAC algorithm is then applied on the obtained vector
space models. For the ontological vector space, an ontological
similarity score is calculated between each vector and its two
neighbours. A lexical similarity score is also obtained for the
lexical vector space. The final similarity score between two
adjacent sentences is the combination of their ontological
similarity and lexical similarity scores. For each set of three
neighbouring sentences, the middle sentence is merged with
the one that is most similar to it from the other two (e.g.
sentence B is merged with C if the similarity score between B
and C is higher than the score between A and B). When the
two neighbours are merged together they form a new text

4Choi’s C99 release and the dataset are available here :
http://web.archive.org/web/20040810103924/http://www.cs.man.ac.uk/~mary/
choif/software.html

1278

block (cluster) and two new vectors (ontological and lexical)
are defined based on the new block to be used in the next
iteration of the algorithm. Iteratively, the algorithm applies the
same process between adjacent blocks until it merges all text
blocks in one single cluster and a tree representation of the
text is produced. A linear segmentation is then produced as
mentioned before (Section III D) where the threshold is set to
10 as each document in Choi’s dataset is consisting of 10
segments.

Since the main contribution of this research is to segment
text based on the ontological similarity between its blocks, we
first evaluate the quality of the produced segments based on
the ontological similarity only. After that, we examine the
impact of adding the lexical similarity to the ontological
similarity using different weights for the two similarity
measures.

The size of the elementary text blocks is considered a
critical step in the segmentation process. Yaari [5] used
paragraphs as the elementary blocks for his segmentation
algorithm and affirms that the size of a paragraph, as opposed
to a sentence, contains sufficient lexical information for the
proximity test. Also Hearst et al. [6] measured the cosine
similarity between text blocks where text blocks are consisting
of fixed number of sentences (window). As a result, we
examine the quality of the produced segments, using the
ontological similarity only or the combination between the
ontological and the lexical similarity, using varying window
sizes: from one to four sentences.

According to the aforementioned considerations, we
conducted four experimental runs (in each run, we used
varying window sizes (1 to 4)):

1) Experiment 1: in the first run we use the ontological
similarity only.

2) Experiment 2: in the second run, we use the
combination between the ontological and lexical similarity
scores with ! = 0.3, where ! specifies the weight of each of
the two similarity measures. Let Osim and Lsim be the
ontological and the lexical similarity scores respectively; the
final score between two sentences (or blocks) S1 and S2 is:

 Sim(S1, S2) = ! * Lsim + (1- !) * Osim (5)

Hence, ! = 0.3 means that the ontological similarity score
weight is 0.7 and the lexical score weight is 0.3.

3) Experiment 3: in this run treat both similarity scores
equally, i.e. ! = 0.5.

4) Experiment 4: in this run we give a higher weight to the
lexical similarity by setting !=0.3.

V. EVALUATION
It is common to evaluate text segmentation systems by Pk

and / or WindowDiff measures. Pk and WindowDiff are penalty
measurement metrics, which means that lower scores indicate
higher segmentation accuracy. Pk was proposed by Beeferman
et al. [29] as a measure that expresses a probability of
segmentation error. To calculate Pk, we take a window of fixed
width k, which is usually set to half of the average segment

length in the reference partition, and move it across the
segmented text, at each step examining whether the
hypothesized segmentation is correct about the separation (or
not) of the two ends of the window. Pk metric is defined as:

 (6)

where "ref (i, j) is an indicator function whose value is one
if sentences i and j belong to the same segment and zero
otherwise. Similarly, "hyp (i, j) is one if the two sentences are
hypothesized as belonging to the same segment and zero
otherwise. The ! operator is the XOR operator. The function
Dk is the distance probability distribution that uniformly
concentrates all its mass on the sentences which have a
distance of k.

WindowDiff [30] is stricter as it not only decides whether
there is a mismatch between the hypothesized partition and the
reference partition, it also counts the difference of the number
of segment boundaries in the given window between the two
partitions. Thus, the results of WindowDiff are generally
higher than those of Pk metric. WindowDiff is defined as:

 (7)

where ref is the correct segmentation for reference, hyp is
the segmentation produced by the model, K is the number of
sentences in the text, k is the size of the sliding window and b(i,
j) is the number of boundaries between sentences i and j.

VI. RESULTS
We evaluated our approach using the WindowDiff error

metric. TABLE II shows the results of experiment 1 (using
only the ontological similarity) while applying different
window sizes, from 1 to 4 sentences per text block. From the
results we can see that the error rates are not high for all the
subsets (range from 0.15 to 0.32), which means that
generating text segments based on the ontological relation
between its constituents is feasible with low error rates. It can
also be noticed that varying the window size does not increase
the quality of the segmentation; in contrast, it decreases the
quality for some subsets. Fig. 4 depicts the impact of the
window size on the quality of the produced segments.

The lowest error rates can be seen in the 9-11 subset (0.15
for all windows), while the highest error rates can be seen in
the 3-5 subset. Intuitively, this implies that as the length of the
reference segments (i.e. the real segments from the original
text) increases, the efficiency of text segmentation increases.
This implication reinforces the feasibility of our approach.
This is because, as mentioned before, long segments exhibit
more interlinking conceptual relations than short segments.

TABLE III shows the results of experiments 2, 3, and 4
where we evaluated the hybrid approach that combines the
ontological and lexical similarities using different weights.

1279

TABLE II. ONTOLOGICAL SIMILARITY ERROR RATES (WD) FOR
DIFFERENT WINDOW SIZES

 Range of n
Window

3-11 3-5 6-8 9-11

W = 1 0.21 0.32 0.20 0.15
W = 2 0.21 0.32 0.21 0.15
W = 3 0.21 0.34 0.21 0.15
W = 4 0.22 0.34 0.21 0.15

Fig. 4. Error rates of the Ontological Similarity using different window sizes

The results of experiment 2 indicate that when ! = 0.3, the
error rates of the segmentation in all the subsets are less than
the error rates using the ontological similarity only (TABLE
II). In experiments 3 and 4, we notice that as ! increases (0.5
and 0.7 respectively), the error rates decrease. According to
(5), when ! increases, the lexical similarity weight is more
than the ontological similarity weight, which means that
combining the lexical similarity with the ontological similarity
enhances the quality of the produced segments.

Furthermore, it is noticed that, as in experiment 1, when the
window size increases, the error rate also increases which
means that the segmentation quality decreases. The chart in
Fig. 5 illustrates that increasing the window size increases the
error rate with ! = 0.3. Fig. 6 depicts the error rates for the
four experiments using window = 1.

To the best of our knowledge, there is no segmentation
approach that uses ontological similarity to segment text.
Therefore, it is not possible to compare the evaluation scores of
our approach to those of a similar approach. Nevertheless we
can compare it with state-of-the-art approaches based on the
segmentation quality in general.

Fig. 5. The error rate for different window sizes with ! = 0.3

Fig. 6. The error rates for the four experiments with window = 1.

TABLE III. HYBRID APPROACH ERROR RATES FOR DIFFERENT
WINDOW SIZES

 Range of n
Window

3-11 3-5 6-8 9-11

Experiment 2: ! = 0.3
W = 1 0.17 0.22 0.17 0.13
W = 2 0.19 0.29 0.18 0.14
W = 3 0.19 0.34 0.20 0.14
W = 4 0.20 0.33 0.20 0.15

Experiment 3: ! = 0.5
W = 1 0.16 0.21 0.16 0.12
W = 2 0.18 0.27 0.17 0.12
W = 3 0.19 0.33 0.19 0.13
W = 4 0.20 0.33 0.19 0.14

Experiment 4: ! = 0.7
W = 1 0.15 0.19 0.15 0.11
W = 2 0.17 0.25 0.16 0.12
W = 3 0.18 0.33 0.19 0.13
W = 4 0.20 0.33 0.20 0.14

TABLE IV. PK VALUES FOR THE CHOI DATA SET FOR VARIOUS
ALGORITHMS IN THE LITERATURE WITH PROVIDED SEGMENT NUMBER

Approach 3-11 3-5 6-8 9-11
U00 0.11 0.13 0.06 0.06
C99 0.13 0.18 0.10 0.10
OntoSeg 0.30 0.19 0.30 0.30
TextTiling 0.46 0.44 0.43 0.48

As we evaluated the performance of our approach using
WindowDiff, we also evaluated it with Pk. The approaches that
we compare our approach with were evaluated also with the
Pk metric. Furthermore, these approaches were evaluated
against the same dataset that we use in our experiments
(Choi’s dataset). Examples of such approaches are: TextTiling
[6], C99 [11], and U00 [15]. TABLE IV presents a
comparison of the performance of our approach compared to
these approaches where number of segments needed is
provided.5

Although OntoSeg (i.e. our segmentation approach that is
based on ontological similarity) does not produce the best
scores, the results show that it –as a novel method in text
segmentation– is generally performing as good as current
state-of-the-art approaches. In other words, the experimental
results show that using ontological similarity in text
segmentation is very promising and also that text
segmentation can be performed in a way that does not depend
on text (lexical) characteristics. This renders OntoSeg an
approach that lends itself well to Ontology-based NLP tasks.

VII. CONCLUSION AND FUTURE WORK
Text Segmentation (TS) is an essential pre-step for many

Natural Language Processing (NLP) tasks, such as
Information Retrieval and Text Summarisation. As these tasks
are moving towards the Semantic Web and the use of

5 The results were brought from Utiyama and Isahara [15] & Riedl and
Biemann [39] papers.

1280

Ontologies (e.g. ontology-based IR systems), this generates a
need to segment text in a way that suits these ontology-based
tasks. In this paper we presented a new approach to text
segmentation based on the ontological similarity between text
blocks. The proposed approach uses a Hierarchical
Agglomerative Clustering (HAC) approach to iteratively
cluster text segments that are deemed to be ontologically
similar to each other. The output is a tree-like hierarchy of the
text. We showed that the produced hierarchy is beneficial in
producing hierarchical text segments with different levels of
granularity, and also in producing linear text segments by
flattening the obtained tree. The results of our experiments
showed that using ontological similarity (even on its own)
performs successful segmentation with low error rates; this
reflects that the ontological segmentation approach has good
potential for being used in modern ontology-based systems.
We also enhanced the proposed approach by combining the
lexical similarity with the ontological similarity; to this end,
the experimental results showed that this combination
enhanced the produced segments.

Moving forward, viable future work may involve
examining a number of factors that can enhance the
segmentation process. For example, it is expected that the
choice of the knowledge base ontology to use definitely
affects the segmentation quality; the richness of the ontology
reflects the richness of the semantic annotation of text. As
mentioned before, there are different approaches to measure
the similarity between two concepts in an ontology, of which
we used the edge-counting based approach. For the other
approaches that rely on concept properties and Information
Content (IC), they measure the similarity between concepts
from different perspectives, and provide, for a concept, a
better understanding of its semantics. Using these approaches
in the similarity measurement may contribute to improving the
segmentation quality.

ACKNOWLEDGMENT
This work is supported by Science Foundation Ireland

(Grant 12/CE/I2267) as part of CNGL Centre for Global
Intelligent Content (www.cngl.ie) at Trinity College Dublin.

REFERENCES
[1] V. Prince and A. Labadié, “Text Segmentation Based on Document

Understanding for Information Retrieval,” in Natural Language
Processing and Information Systems. Springer Berlin Heidelberg, 2007.

[2] B. K. Boguraev and M. S. Neff, “Discourse segmentation in aid of
document summarization,” System Sciences, 2000. Proceedings of the
33rd Annual Hawaii International Conference on. IEEE, 2000.

[3] C. Beck, A. Streicher, and A. Zielinski, “Using Text Segmentation
Algorithms for the Automatic Generation of E-Learning Courses,”
Lexical and Computational Semantics (SEM 2014), p. 132, 2014.

[4] A. Kazantseva and S. Szpakowicz, “Linear Text Segmentation Using
Affinity Propagation,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2011, p. 284–293.

[5] Y. Yaari, “Segmentation of Expository Texts by Hierarchical
Agglomerative Clustering,” In Proceedings of RANLP’97.

[6] M. A. Hearst, “Multi-paragraph Segmentation of Expository Text,” in
Proceedings of the 32Nd Annual Meeting on Association for
Computational Linguistics, 1994, pp. 9–16.

[7] G. Hliaoutakis, Angelos, G. Varelas, Giannis , E. Voutsakis, E. Petrakis,
G.M., and E. Milios, “Information Retrieval by Semantic Similarity,” In
Proceedings of International Journal on Semantic Web and Information
Systems (IJSWIS), vol. 2, no. 3, 2006.

[8] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang, “Topic
Detection and Tracking Pilot Study: Final Report,” in Proceedings of the
DARPA Broadcast News Transcription and Understanding Worksho,
1998, pp. 194–218.

[9] F. Song, W. Darling, A. Duric, and F. Kroon, “An Iterative Approach to
Text Segmentation,” in Advances in Information Retrieval SE - 63, vol.
6611. Springer Berlin Heidelberg, 2011, pp. 629–640.

[10] J. Eisenstein and R. Barzilay, “Bayesian Unsupervised Topic
Segmentation,” in Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2008, pp. 334–343.

[11] F. Y. Y. Choi, “Advances in Domain Independent Linear Text
Segmentation,” in Proceedings of the 1st North American Chapter of the
Association for Computational Linguistics Conference, 2000, pp. 26–33.

[12] M. A. Hearst, “TextTiling: Segmenting Text into Multi-paragraph
Subtopic Passages,” Computational linguistics., vol. 23, pp 33–64, 1997.

[13] M. Galley, K. McKeown, E. Fosler-Lussier, and H. Jing, “Discourse
Segmentation of Multi-party Conversation,” in Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics, 2003.

[14] F. Y. Y. Choi, P. Wiemer-Hastings, and J. Moore, “Latent Semantic
Analysis for Text Segmentation,” in In Proceedings of Conference on
Empirical Methods in Natural Language, 2001, pp. 109–117.

[15] M. Utiyama and H. Isahara,“A Statistical Model for Domain-
independent Text Segmentation,” in Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics,2001, 499–506.

[16] H. Misra, F. Yvon, J. M. Jose, and O. Cappe, “Text Segmentation via
Topic Modeling: An Analytical Study,” in Proceedings of the 18th ACM
Conference on Information and Knowledge Management, 2009.

[17] J. C. Reynar, “An Automatic Method of Finding Topic Boundaries,” in
Proceedings of the 32Nd Annual Meeting on Association for
Computational Linguistics, 1994, pp. 331–333.

[18] J. Morris and G. Hirst, “Lexical Cohesion Computed by Thesaural
Relations As an Indicator of the Structure of Text,” Computational
linguistics, vol. 17, no. 1, pp. 21–48, 1991.

[19] M.-Y. Kan, J. L. Klavans, and K. McKeown, “Linear Segmentation and
Segment Significance,” CoRR, vol. cs.CL/9809, 1998.

[20] P. Resnik and Philip, “Semantic similarity in a taxonomy: An
information-based measure and its application to problems of ambiguity
in natural language,” Journal of Artificial Intelligent. pp. 95–130, 1999.

[21] D. Lin, “An information-theoretic definition of similarity.,” in ICML,
1998, vol. 98, pp. 296–304.

[22] E. Cambria, J. Fu, F. Bisio, and S. Poria, “AffectiveSpace 2: Enabling
affective intuition for concept-level sentiment analysis,” in Twenty-
Ninth AAAI Conference on Artificial Intelligence, pp. 508–514, 2015.

[23] E. Cambria, P. Gastaldo, F. Bisio, and R. Zunino, “An ELM-based
model for affective analogical reasoning,” Neurocomputing, vol. 149,
pp. 443–455, Feb. 2015.

[24] A. Budanitsky and G. Hirst, “Evaluating WordNet-based Measures of
Lexical Semantic Relatedness,” Computational Linguistics, vol. 32, no.
1, pp. 13–47, 2006.

[25] Z. Wu and M. Palmer, “Verbs Semantics and Lexical Selection,” in
Proceedings of the 32Nd Annual Meeting on Association for
Computational Linguistics, pp. 133–138, 1994.

[26] A. K. Jain, R. C. Dubes, and others, “Algorithms for clustering data”,
vol. 6. Prentice hall Englewood Cliffs, 1988.

[27] L. Du, W. L. Buntine, and M. Johnson, “Topic Segmentation with a
Structured Topic Model.,” in HLT-NAACL, pp. 190–200, 2013.

[28] M. Riedl and C. Biemann, “Text segmentation with topic models,” J.
Lang. Technol. Computational Linguistics, vol. 27, pp. 47–69, 2012.

[29] D. Beeferman, A. Berger, and J. Lafferty, “Statistical Models for Text
Segmentation,” Machine Learning, vol. 34, no. 1–3, pp. 177–210, 1999.

[30] L. Pevzner and M. A. Hearst, “A Critique and Improvement of an
Evaluation Metric for Text Segmentation,” Computational Linguistics,
vol. 28, no. 1, pp. 19–36, Mar. 2002.

1281

