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Abstract
Foundational Large Language Models (LLMs) have changed the way we
perceive technology. They have been shown to excel in tasks ranging from
poem writing and coding to essay generation and puzzle solving. With the
incorporation of image generation capability, they have become more com-
prehensive and versatile AI tools. At the same time, researchers are striving
to identify the limitations of these tools to improve them further. Currently
identified flaws include hallucination, biases, and bypassing restricted com-
mands to generate harmful content. In the present work, we have identified
a fundamental limitation related to the image generation ability of LLMs,
and termed it “The NO Syndrome”. This negation blindness refers to LLMs
inability to correctly comprehend ‘NO’ related natural language prompts to
generate the desired images. Interestingly, all tested LLMs including GPT-4,
Gemini, and Copilot were found to be suffering from this syndrome. To
demonstrate the generalization of this limitation, we carried out simulation
experiments and conducted entropy-based and benchmark statistical analysis
tests on various LLMs in multiple languages, including English, Hindi, and
French. We conclude that the NO syndrome is a significant flaw in current
LLMs that needs to be addressed. A related finding of this study showed a
consistent discrepancy between image and textual responses as a result of
this NO syndrome. We posit that the introduction of a ‘negation context-
aware’ reinforcement learning based feedback loop between the LLM’s textual
response and generated image could help ensure the generated text is based
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on both the LLM’s correct contextual understanding of the negation query
and the generated visual output.
Keywords: Artificial intelligence, Large language model, Generative AI

1. Introduction

Generative-AI enabled large language models (LLMs), exemplified by
OpenAI’s GPT-3.5 and GPT-4 [1], Google’s Gemini [2], Meta’s Llama, etc.,
have reshaped the landscape of artificial intelligence. These models excel in
generating coherent text [3] and have expanded into multimodal domains [4],
handling inputs across text [5], images [6], audio [7], and video [8]. Their
capabilities also extend to logical reasoning [9] enabling them to effectively
tackle a range of tasks, from writing poetry to managing complex generative
tasks in different languages [10, 11].

The language models are pivotal in driving technological and societal
transformations, raising both economic and ethical considerations across
various sectors [12, 13]. The rapid growth in research related to LLMs and
generative AI not only highlights the importance of such technologies in the
current digital age but also emphasizes the necessity for a comprehensive un-
derstanding of their mechanisms, applications, and limitations. The scope of
academic and industrial research into LLMs, as highlighted by the substantial
volume of scholarly activity (with 11,645 documents related to ‘Large Lan-
guage Models’ and 8,643 documents pertaining to ‘ChatGPT’), underscores
the importance and broad applicability of LLMs, as shown in Figure 1. As
the exploration into the vast capabilities and extensive applications of LLMs
deepens, it becomes imperative to critically examine and refine them to meet
evolving standards and expectations.

Despite their capabilities, LLMs still exhibit limitations, and are suscep-
tible to generating ‘hallucinated’ content—data that is either fabricated or
misleading [14]. The phenomenon poses significant risks, especially when
such models are deployed in critical information dissemination contexts and
lead to the spread of misinformation [15]. For instance, models like ChatGPT
have been observed to fabricate information, creating outputs that might
appear plausible yet are fundamentally incorrect. It compromises the gener-
ated content’s reliability and raises substantial ethical concerns regarding the
propagation of biases and stereotypes [16], potentially amplifying harmful
narratives [10].
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(a)

(b)
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Figure 1: The growth in research on LLMs. Query on “large language model” OR
“generative AI” OR “generative artificial intelligence” for articles published in 2023-24
yields 12,857 results, Whereas query on “ChatGPT” OR “Chat GPT” OR “Chat-GPT”
for the same duration appeared to be 9,157, (figure 1a). Additionally, the research has
covered many subject areas dominated by Computer Science, Medicine, and humanities,
figure 1b and 1c.
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To that end, it is imperative to examine the limitations of LLMs, par-
ticularly in terms of accuracy and bias [17]. It helps address the challenge
of misinformation by improving the LLMs’ ability to detect complex factual
inconsistencies to enhance trust in their outputs [18]. Understanding these
limitations also helps mitigate the impact of spurious biases to ensure that
LLMs are deployed responsibly and effectively in real-world applications [19].
Among many, hallucination and biased responses are the most commonly
studied limitations [20]. However, they are qualitative in nature which makes
it difficult to assess the degree of their presence. Consequently, researchers are
increasingly focusing on developing robust quantitative metrics to effectively
measure and analyze these qualitative attributes [14].

For instance, Semantic entropy, an entropy-based uncertainty estimator for
LLMs, was devised to detect confabulations (a subset of hallucinations) [15].
It mitigates the variability in expressing a single idea by assessing uncertainty
at the semantic level rather than through specific word sequences. The metric
demonstrated cross-dataset and cross-task applicability without necessitating
prior knowledge of the task, relies on no task-specific data, and exhibits robust
generalization to previously unseen tasks. Moreover, a ‘moral direction’ metric
was developed to assess the biases in LLMs using techniques such as Principal
Component Analysis (PCA) [16]. The metric enabled the assessment of the
normativity (or non-normativity) of arbitrary phrases without the need for
explicit language model training for the specific task.

Although the limitations of LLMs are under continuous study, many
shortcomings remain unidentified [21]. As progress in the field slowly unveils
these limitations, our work contributes by identifying a pervasive flaw in
foundational LLMs, which we term the ‘NO Syndrome’. The issue arises when
LLMs fail to correctly process negations in prompts, a basic yet crucial aspect
of natural language understanding. Our investigations reveal that when LLMs
are prompted to generate images with specific negations, such as ‘a person
without spectacles,’ they often produce incorrect results, such as images of
people with spectacles. The flaw persists across multiple languages, including
English, Hindi, and French, suggesting a fundamental limitation in the current
models’ processing capabilities. By exploring the shortcomings, we aim to
enhance the LLMs’ factual accuracy and reliability, thereby fortifying trust
in AI-generated content and ensuring their more responsible deployment in
real-world applications [22].

Furthermore, to enhance the depth and rigor of our analysis, we experi-
mented with various prompts and selected the most promising, common, and
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straightforward queries. To generalize the obtained results, we tested prompts
in three different languages: English, Hindi, and French. Our study highlights
a limitation that appears to be present in all foundational LLMs, regardless
of the language used. To quantify inaccuracies, we employed two metrics: the
percentage of inaccuracy and entropy. The metrics offer a robust means to
assess the extent of inaccurate results and compare the performance of LLMs
effectively. Additionally, we conducted non-parametric statistical tests to
determine if the outcomes of different LLMs differ significantly. Noteworthy
observations include discrepancies between image and textual responses, and
prompt types that lead to inaccuracies. The comprehensive approach ensures
a thorough and reliable analysis of the performance of LLMs across diverse
scenarios.

2. Methodology

In this section, the LLMs employed are discussed. In addition to this, we
have provided a detailed account of the adopted methodology (see Figure 2).

2.1. LLMs employed
Among many LLMs, we considered GPT-4, Gemini, and Copilot due to

their popularity and wide-spread usage. Each of them is developed by leading
and reputed organizations (OpenAI, Google, and Microsoft) and ensures the
study has a broad and diverse spectrum of LLM technology.

GPT-4 stands for Generative Pre-trained Transformer 4. It is a large
language model created by OpenAI, and the fourth in its series of GPT
foundation models [1]. Unlike GPT-3.5, GPT-4 is a multimodal model,
meaning that it can accept both text and image inputs and can generate both
text and image outputs. Gemini is a cutting-edge large language model (LLM)
developed by Google. It builds upon Google’s T5 transformer model with
modifications to enhance its capabilities. Unlike traditional chatbots, Gemini
can process and comprehend diverse information formats, including text,
images, code, and even audio which allows it to grasp intricate situations with
greater nuance and accuracy. Gemini serves as the core technology behind
many of Google’s AI tools, contributing significantly to their functionality
and effectiveness [23].

Copilot is an advanced AI-powered tool designed by Microsoft. Like
other LLMs, Copilot can generate text, summarize content, and provide
context-specific suggestions within familiar environments such as Word, Excel,
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PowerPoint, and Outlook. Its sophisticated processing allows it to understand
and respond to complex queries, draft documents, create data visualizations,
and automate repetitive tasks. At its core, Copilot has been trained on
massive datasets of text and code. It can suggest images and generate new
images based on the input text description [24].

2.2. Languages used
To verify the generalizability of the results, as outlined, we tested the

prompts in three languages, namely English, Hindi, and French. The selection
of the languages for the experimentation was based on their global significance,
broad applicability and linguistic diversity. English is the most widely used
language globally and the primary medium for international communication
and therefore, provides a broad and accessible base for analysis. Hindi is
one of the most used languages in Indian subcontinent and the fourth most
spoken language in the world. French is also recognized as a major world
language and is used across multiple continents, including Europe, Africa,
and North America. These languages have a diverse range of grammatical
structures and helped us check the generalizability of the obtained results.

2.3. Prompt formation
We designed the following five prompts to get the images generated by

LLMs:

• Q1: Generate image of a person/dog with no spectacles.

• Q2: Generate image of an elephant with no tusks.

• Q3: Generate image of flowers with no blue color.

• Q4: Generate image of a market with no car.

• Q5: Generate image of a car with no dog on top.

The design of the prompts focused on evaluating LLMs capability to
handle negative constraints in image generation. Each prompt is crafted to
assess the LLM’s understanding and execution of exclusion criteria within
specific contexts to ensure the model can accurately interpret and generate
images and exclude particular elements.

The first prompt tests LLMs ability to identify and exclude a common but
optional accessory (spectacles) from people. We included dog also in this query
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Figure 2: Figure 2(a) shows the overall methodology adopted in the current work. It outlines
the flow of language and query selection, followed by LLMs’ responses and interpretation
of generated images. Figure 2(b) shows a specific instance of results obtained for English
Query-1 (Generate image of a person/dog with no spectacles) with all LLMs. Here, the
image with a red border represents an incorrect image, while a green border represents a
correct image.
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because Gemini refused to produce images of people. The second prompt asks
LLMs to exclude an essential body part of the elephant. The third prompt
assesses LLMs proficiency in manipulating color properties. The fourth
prompt evaluates LLMs for creating complex and dynamic environments
while respecting the exclusion of a specific element (cars). The fifth prompt
tests the LLMs’ precision in interpreting and applying negative constraints in
a specific and somewhat uncommon scenario. Overall, all prompts challenged
LLMs to adhere to specific exclusion criteria while maintaining the accuracy
of the primary concepts.

2.4. Response collection
Repeating experiments is a common practice in research to ensure the

robustness, reliability, and validity of the findings [25, 26]. Moreover, it
improves the performance of ChatGPT [27]. Therefore, we also ran each
of five prompts five times in order to ensure the accuracy and reliability
of the results. By generating multiple outputs for each prompt, we could
assess the consistency of the LLM’s performance and identify any potential
variations or anomalies in the images produced. It also allowed us to observe
whether the model consistently adhered to the exclusion criteria specified in
the prompts. Additionally, it helped to ensure that the conclusions drawn
from the experiment were based on a comprehensive and representative set of
results.

For each run, we stored the image and corresponding textual response
generated by LLMs. The overall experimentation process is shown in Algo-
rithm 1.

3. Results and Discussion

In this section, we have presented the results and discussed them.

3.1. Comparison between LLMs
The results obtained from experiments are presented in Table 1. The

results of various Large Language Models (LLMs) demonstrate a clear disparity
in their ability to generate accurate images from textual queries. GPT-4
consistently produced a high number of incorrect images across all three
languages (English, Hindi, and French), particularly for the queries “Generate
an image of flowers with no blue color” and “Generate an image of an elephant
with no tusks.” It indicates that GPT-4 struggles with understanding and

8



Algorithm 1 The process of image generation used in the study
1: Design relevant prompts with ‘NO’ keyword.
2: for each prompt (Pi) do
3: for each language (Lj) do
4: for each Large Language Model (LLM) (Mk) do
5: Run prompt Pi in language Lj on LLM Mk.
6: Store the generated image Iijk and record the corresponding textual

response (Tijk).
7: end for
8: end for
9: end for

10: Conduct a performance assessment and compare the results.

processing negations in the context of image generation. On the other hand,
Gemini performs relatively well for English queries but fails to generate any
responses for Hindi and French queries. It highlights a significant limitation
of Gemini in handling non-English languages in its current version. Copilot
exhibited a moderate error in comparison and performed slightly better than
GPT-4 on certain queries. However, it also outputs a substantial number of
incorrect responses. A sample of incorrect images generated by the LLMs is
given in Table 2.

The findings highlight the inherent challenges faced by LLMs in accurately
interpreting and generating images from textual descriptions. The high fre-
quency of errors across all LLMs (see Figure 3) suggests that the current state
of LLMs is not yet sufficiently advanced to handle complex image generation
tasks reliably when dealing with negations or specific exclusions. Moreover,
the lack of responses from Gemini for non-English queries underscores the
need for LLMs to be more robust and versatile across different languages.
In fact, when prompted with Hindi and French queries, it replied with:
``हम इस भाषा म� Gemini �ारा �चत्र बनाने क� क्षमता को बहेतर बनाने का प्रयास
कर रहे ह�. यह स�ुवधा शीघ्र ह� उपलब्ध कराई जाएगी और �रल�ज़ नोट्स को इसके
�लए तत्काल अपडटे कर �दया जाएगा" and ”Nous mettons tout en œuvre pour
améliorer la capacité de Gemini à générer des images dans cette langue. Cette
fonctionnalité devrait bientôt être prête et nous mettrons à jour les notes de
version dès qu’elle sera disponible” respectively. Both the statements loosely
translate to: ”We are trying to improve Gemini’s ability to draw images in
this language. This feature will be made available soon and the release notes
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Table 1: Frequency of incorrect images generated by various LLMs.
Language Query LLMs’ incorrect responses

GPT-4 Gemini Copilot

English

Generate image of a person/dog with no spectacles. 4 3 4
Generate image of an elephant with no tusks. 5 4 5
Generate image of flowers with no blue color. 5 3 4
Generate image of a market with no car. 3 2 3
Generate image of a car with no dog on top. 2 3 4

Hindi

ऐसे व्य��/कु�े का �चत्र बनाएं िजसने चश्मा न पहना हो 5 x 5
ऐसे हाथी का �चत्र बनाएं िजसके दांत न हो 5 x 5
ऐसे फूल� का �चत्र बनाएं िजसम� नीला रंग न हो 5 x 4
ऐसे बाज़ार का �चत्र बनाएं िजसम� कार न हो 2 x 3
ऐसी कार का �चत्र बनाएं िजसके ऊपर कु�ा न हो 2 x 3

French

Générez une image de personne/chien sans lunettes 2 x 5
Générez l’image d’un éléphant sans défenses 5 x 5
Générez une image de fleurs sans couleur bleue 5 x 5
Générer l’image d’un marché sans voiture 2 x 4
Générez l’image d’une voiture sans chien sur le dessus 2 x 3

will be updated immediately” .
Overall, while there are variations in performance among LLMs, the

results indicate a significant need to enhance accuracy in the domain of image
generation.

3.2. Entropy calculation
In information theory, Entropy is a measure of the uncertainty or random-

ness in a set of outcomes [28]. It quantifies the expected amount of information
when observing a random variable. For a discrete random variable X with
possible outcomes x1, x2, . . . , xn and a probability mass function P (X), the
entropy H(X) is defined as:

H(X) = �
nX

i=1

P (xi)log2P (xi). (1)

For our work, entropy provides a measure of the uncertainty or variability
in the LLMs’ responses. Lower entropy values indicate that the LLMs’
responses are more predictable and consistent, while higher entropy values
suggest greater variability and unpredictability. The entropy values for each
LLM are shown in Figure 4.
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Table 2: The table shows sample incorrect images generated by various LLMs for different
queries in English language.

Query Sample images from LLMs
GPT-4 Gemini Copilot

Q1

Q2

Q3

Q4

Q5 11
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Figure 3: The figure shows the percentage of inaccuracy for different language models
(GPT-4, Copilot, Gemini) across different languages (English, Hindi, French) and an overall
inaccuracy value. Though Gemini produced the least incorrect results, it could not process
Hindi and French languages. On the other hand, Copilot exhibited the highest percentage
of inaccuracy. The margin of difference in performance between GPT-4 and Copilot was
highest for the French language.
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Figure 4: The figure shows entropy values for different language models (GPT-4, Copi-
lot, Gemini) across different languages (English, Hindi, French) and an overall entropy
assessment. Copilot provided incorrect responses more consistently in English compared to
GPT-4 and Gemini, with Gemini showing a better distribution of correct answers. The
trend is similar for Hindi language except Gemini is not yet able to handle queries in Hindi.
For French queries, Copilot demonstrates more incorrect responses than GPT-4.
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3.3. Statistical Analysis
To test whether the responses of LLMs are significantly different or not,

we carried out two statistical tests, namely Friedman Test [29] and Wilcoxon
Signed-Rank Test [30]. Both are non-parametric tests [31] and do not assume
the data are normally distributed. The Friedman Test is used to detect
differences in treatments across multiple test attempts but requires at least
three sets of samples. The test calculates the rank of each row (subject) across
columns (treatments) and then analyzes them. The value of p associated with
the test statistic F obtained is used to verify the hypothesis. Equation (2)
presents the formula used to calculate F .

F =

"
12

b(k)(k + 1)

kX

l=1

T
2
k

#
� 3b(k + 1), (2)

where, k represents the number of treatments, b is number of rows or blocks,
and T

2
k is the squared sum of ranks for sample treatment k. The test statistic Ft

approximately follows a chi-square distribution with k−1 degrees of freedom.
On the other hand, the Wilcoxon signed-rank test can be applied to two

related samples. It calculates the differences between paired observations,
ranks the differences, sums the ranks of positive differences, and compares
the sum to its expected value under the null hypothesis. The test statistic W

can be calculated according to Equation (3).

W =
NX

i=1

[sgn(x2,i � x1,i).Ri], (3)

where, N represents the sample size, sgn is the sign function, x2,i and x1,i

corresponds to ranked pairs from two distributions, and Ri is the rank of the
absolute difference between x2,i and x1,i. Moreover, the distribution of W can
be approximated by a normal distribution.

Since Gemini produced responses only for English queries, the Friedman
Test was applied to the outcomes of all three LLMs for English queries only.
The Wilcoxon Signed-Rank Test was applied to GPT-4 and Copilot responses
only across all three languages. For the Friedman Test, the test statistic
was calculated as 5.76, with 0.056 as the corresponding p-value. The p-value
(0.056) is just above the common significance level of 0.05. It suggests a trend
towards significant differences in the number of incorrect responses among
GPT-4, Gemini, and Copilot for English queries, but it is not statistically
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significant at the 0.05 level. For the Wilcoxon Signed-Rank Test, the test
statistic was 6.0 and the corresponding p-value was 0.084. The p-value (0.084)
indicates no statistically significant difference between the number of incorrect
GPT-4 and Copilot responses across all languages. However, the p-value is
once again relatively close to the 5% significance level to weakly suggest some
differences in the responses.

3.4. Discrepancy between image and textual response
An interesting observation was that when we asked an LLM to generate

an image using keyword ‘NO’, i.e., not to include a specific element, it often
did not generate an accurate image, however, the corresponding textual
response indicated that it excluded that element. For example, at a particular
instance, when we passed the prompt Generate image of an elephant with
no tusks to GPT-4, it generated the image shown in Table 2 but the textual
response was: Here is the image of an elephant without tusks, standing in its
natural habitat. There was an obvious misalignment between the text and
image generation capabilities of each LLM used. The discrepancy highlights
a few cases. Although an LLM’s image generation model interprets textual
description to create the visual content, text and image generation processes
are essentially separate. There is no direct feedback loop between the LLM’s
textual response and the image generated, i.e., the text is based on the LLM’s
understanding of the query, not on the final visual output.

It is also important to mention that apart from image generation using
the ‘No’ keyword, we also tried text generation under similar settings but
could not find a violation for any LLM. For instance, we supplied the prompt
“Describe ‘Earth’ with no mention of the word” multiple times to the LLMs
but got the correct response each time. The following was the response of
Gemini at a specific instance: “Imagine a swirling blue marble, suspended in
the vast blackness of space. It’s mostly covered in vast liquid oceans, teeming
with life in all shapes and sizes. White wisps of clouds swirl around its surface,
occasionally parting to reveal continents of brown, green, and white – some
scorched by deserts, others cloaked in lush forests or vast, icy plains. This
sphere spins, bathed in the light of a life-giving star, creating a cycle of light
and darkness that nourishes a dizzying array of plants and animals. That’s
our home, a planet teeming with life and constantly changing.”.
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(a) Woman with no neck-
lace

(b) River with no boat (c) Sky with no airplane

Figure 5: The figure shows the images generated by GPT-4 for other similar prompts. It is
evident that GPT-4 exhibited the ‘NO’ syndrome here also and produced incorrect images
for similar queries.

3.5. Other LLMs and Prompts
To generalize the results further, we tested a few more prompts and one

more LLM, i.e., Meta’s Llama [32]. The other prompts were the following:
1. Generate image of a woman with no necklace.
2. Generate image of river with no boat.
3. Generate an image of the sky with no airplane.
For these extra prompts also, we got similar violations where the generated

images had the components that needed to be excluded. Some sample images
of the extra prompts are provided in Figure 5. Meta’s Llama-3 is also not
free from errors and produces similar results as other LLMs when tested for
the original five image generation queries. The images generated through
Llama-3 are shown in Figure 6.

3.6. Observations
There are a few interesting observations that need further exploration.

We already mentioned in Section 4.4 that there is a misalignment between
the generated image and the corresponding textual answer. Moreover, it is
obvious that changes in language do not have a significant impact on the
results produced by any LLM. It is also noteworthy that although we used
the ‘No’ keyword in each prompt, some prompts produced incorrect images
more frequently. For the prompt, Generate an image of an elephant with no
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(a) Q1 (b) Q2 (c) Q3

(d) Q4 (e) Q5

Figure 6: The images generated by Meta’s Llama for the original five prompts show that
the performance of Llama follows other LLMs and it also suffers from negation blindness.
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tusks, we never got the accurate image from any LLM in any language. For
other prompts such as Generate an image of a market with no car, we got
fewer inaccurate image instances.

It is also worth mentioning that not every prompt with the ‘No’ keyword
will produce inaccurate results. We tested prompts, such as Generate image
of a mosque from inside with no worshippers, which almost always produced
accurate results (see Figure 7). Therefore, it is difficult to discern beforehand
which prompt with exclusion criteria will produce inaccurate results.

3.7. Limitations
The study focuses on a few specific LLMs (GPT-4, Gemini, and Copilot).

While they are significant models, the findings may not be generalized to
all existing or future LLMs. A more comprehensive study that includes
other LLMs might increase the acceptability of the results. Moreover, the
experiments conducted across multiple languages (English, Hindi, and French)
were limited which could limit the reliability of the findings. More languages,
queries, and rigorous experimentation would yield better evidence to support
the existence of the “NO syndrome”.

The study does not provide concrete reasons for the mentioned flaw in
image generation and, therefore, could not provide suggestions for its removal.
Moreover, LLM capabilities are evolving rapidly with frequent updates and
improvements. Upgradation of LLMs after the current study’s completion
could also render some findings less relevant, i.e., findings related to the
current limitation may be mitigated in future versions, potentially limiting
the long-term applicability of the study’s conclusions.

4. Conclusion

The present study has explored and highlighted a significant limitation
within large language models (LLMs) concerning image generation. It demon-
strates LLMs repeated inability to omit specific elements from generated
images despite explicit instructions. Our findings have been replicated across
multiple state-of-the-art LLMs including GPT-4, Gemini, and Copilot, and
across a number of languages, namely English, Hindi, and French. Compara-
tive experiments show that the identified limitation is not isolated to a single
model or language but is a universal issue among current foundational LLMs.
The study is timely and crucial as it challenges the flexibility and adaptability
of LLMs, especially for applications that require precise image generation.
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(a) GPT-4: Room with no
furniture

(b) Gemini: Room with no
furniture

(c) Copilot: Room with no
furniture

(d) GPT-4: Mosque with
no worshippers

(e) Gemini: Mosque with
no worshippers

(f) Copilot: Mosque with
no worshippers

Figure 7: The figure indicates the results of GPT-4, Gemini, and Copilot for the queries
“Generate image of a room with no furniture”(a-c) and “Generate image of a mosque
from inside with no worshipers”(d-f). We tested the prompts multiple times but always
got correct images. This indicates that the “No” keyword does not always trick LLMs to
generate incorrect results. Therefore, it becomes important to identify the category of
queries for which they often generate wrong images.
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Further, we have identified a related unexplored limitation, specifically,
the discrepancy between image and textual responses. We hypothesize this
discrepancy may be a result of the “NO syndrome”, highlighting fundamental
flaws in the current design and training methodologies of LLMs.

Consequently, we conclude these challenges need to be holistically ad-
dressed to enhance the utility and effectiveness of multi-lingual and multi-
modal LLMs.

Ongoing work aims to address current limitations of our study including
the need to scale and systematically test our findings across a wider range of
LLMs and languages, and the development of an open standardised multi-
lingual evaluation framework. The results of the ongoing study will be made
openly available as a benchmark resource for the research community.

For future work, we posit that the introduction of a ‘negation context-
aware’ reinforcement learning based feedback loop between the LLM’s textual
response and generated image could help ensure the generated text is based on
both the LLM’s correct contextual understanding of the negation query and
the generated visual output. The implications of our findings are substantial
for developers and researchers in the field of artificial intelligence, implying
the need for a greater focus on refining LLMs to handle exclusion criteria
more effectively.
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